
INScore
OSC Messages Reference

v.1.28

D. Fober
<fober@grame.fr>

Centre national de création musicale

INScore makes use of the following technologies:

The GUIDOEngine http://guidolib.sf.net

The IRCAM Gesture Follower http://imtr.ircam.fr/imtr/Gesture_Follower

The GRAME Faust Compiler http://faust.grame.fr

The Qt5 cross-platform application and UI framework https://www.qt.io/

INScore research and development has been funded by the French National Research Agency [ANR]
Interlude project [ANR- 08-CORD-010] and INEDIT project [ANR-12-CORD-0009].

http://guidolib.sf.net
http://imtr.ircam.fr/imtr/Gesture_Follower
http://faust.grame.fr
https://www.qt.io/

Contents

1 Introduction 2

2 General format 3
2.1 Parameters . 3

2.2 Address space . 4

2.3 Aliases . 4

2.3.1 Scaling . 5

2.3.2 Using more than one implicit message . 5

3 Common messages 7
3.1 Positioning . 8

3.1.1 Absolute positioning . 9

3.1.2 Relative positioning . 9

3.1.3 Components origin . 10

3.2 Components transformations . 10

3.3 Color messages . 11

3.3.1 Absolute color messages . 11

3.3.2 The color messages . 12

3.3.3 The hsb messages . 12

3.3.4 Relative color messages . 13

3.4 Pen control . 13

3.5 The ’effect’ messages . 14

3.5.1 The blur effect . 14

3.5.2 The colorize effect . 15

3.5.3 The shadow effect . 15

3.6 The ’edit’ message . 15

4 Time management messages 17
4.1 Date and duration . 17

4.2 Tempo . 18

5 Miscellaneous messages 19

6 The ’set’ message 20
6.1 Symbolic music notation . 20

6.2 Piano roll music notation . 21

6.3 Textual components . 21

6.4 Vectorial graphics . 22

6.5 Signals and graphic signals . 23

6.6 Media files . 23

6.7 Miscellaneous . 24

6.8 File based resources . 24

6.9 The file type . 25

6.10 Web objects . 25

7 The ’get’ messages 27

8 Type specific messages 28
8.1 Brush control . 28

8.2 Width and height control . 29

8.3 Symbolic score . 30

8.4 Piano roll . 30

8.5 Audio and Video . 32

8.6 SVG Objects . 33

8.7 Rectangles . 33

8.8 Arcs . 33

8.9 The ’grid’ object . 34

8.10 Arrows . 34

8.11 Textual objects . 35

8.11.1 Font control . 35

8.11.2 Writing . 36

8.12 The ’debug’ nodes . 36

9 Application messages 37
9.1 Application management . 37

9.2 Ports management . 38

9.3 System support . 38

9.4 Application level queries . 39

9.5 Application static nodes . 39

9.5.1 The ’stats’ nodes . 39

9.5.2 The ’debug’ nodes . 40

9.5.3 The ’log’ nodes . 40

9.5.4 The ’plugins’ nodes . 41

9.5.5 The ’ssl’ node . 41

10 Scene messages 42
10.1 Scene control . 42

10.2 OpenGl rendering . 43

10.3 Scene queries . 43

11 Messages forwarding 45
11.1 Remote hosts list . 45

11.2 SSL support . 46

11.3 Filters . 46

11.4 Specific queries . 47

12 Layers 48
12.1 Layers generalization . 48

13 Mapping graphic space to time space 49
13.1 The ’map’ message . 49

13.1.1 Segments definitions . 50
13.2 The ’map+’ message . 51
13.3 Mapping files . 52
13.4 Symbolic score mappings . 52

14 Synchronization 53
14.1 Synchronization modes . 54

14.1.1 Using the master date . 54
14.1.2 Synchronizing an object duration . 55
14.1.3 Controlling the slave position . 55
14.1.4 The syncFrame mode . 55

15 Signals and graphic signals 56
15.1 The ’signal’ static node. 56

15.1.1 Signal messages. 57
15.1.2 Composing signals in parallel. 57
15.1.3 Distributing data to signals in parallel . 58

15.2 Connecting signals to graphic attributes. 59
15.3 Graphic signals. 60

15.3.1 Graphic signal default values. 61
15.3.2 Parallel graphic signals. 62

16 Sensors 63
16.1 Sensors as signals . 63
16.2 Sensors as nodes . 64
16.3 Values . 64
16.4 Calibration . 65
16.5 Sensor common messages . 65
16.6 Sensor specific messages . 66

16.6.1 Accelerometer sensor . 66
16.6.2 Magnetometer sensor . 67
16.6.3 Rotation sensor . 67
16.6.4 Orientation sensor . 67
16.6.5 Tilt sensor . 67

17 Events and Interaction 68
17.1 Internal events . 69

17.1.1 Mouse events . 69
17.1.2 Touch events . 70
17.1.3 Time events . 70
17.1.4 URL events . 70
17.1.5 Miscellaneous events . 71
17.1.6 Type specific events . 71

17.2 Attribute based events . 71
17.3 User defined events . 72
17.4 The ’event’ message . 72
17.5 Variables . 73

17.5.1 Position variables . 73

17.5.2 Sensor variables . 74

17.5.3 Time variables . 74

17.5.4 Miscellaneous variables . 75

17.5.5 Message based variables . 75

17.5.6 Variables for user defined events . 75

17.5.7 OSC address variables . 75

17.6 Interaction state management . 76

17.7 File watcher . 76

18 Score expressions 77
18.1 General Syntax . 77

18.2 Score Operators . 77

18.3 Score Arguments . 78

18.4 ’expr’ commands . 79

18.5 newData event . 79

19 Plugins 81
19.1 FAUST plugins . 81

19.1.1 Set Message . 81

19.1.2 Specific messages . 82

19.1.3 Feeding and composing FAUST processors . 82

19.2 Gesture Follower . 83

19.2.1 Basic principle . 83

19.2.2 Messages . 83

19.2.3 Gestures management . 84

19.2.4 Events and interaction . 85

19.2.5 Gesture Follower Appearance . 86

19.3 Httpd server plugin . 86

19.3.1 Set Message . 86

19.3.2 Specific messages . 86

20 Changes list 88
20.1 Version 1.28 vs version 1.27 . 88

20.2 Version 1.27 vs version 1.24 . 88

20.3 Version 1.24 vs version 1.22 . 88

20.4 Version 1.22 vs version 1.21 . 89

20.5 Version 1.21 vs version 1.18 . 89

20.6 Version 1.18 vs version 1.17 . 89

20.7 Version 1.17 vs version 1.15 . 89

20.8 Version 1.15 vs version 1.12 . 90

20.9 Version 1.12 vs version 1.08 . 91

20.10Version 1.08 vs version 1.07 . 91

20.11Version 1.07 vs version 1.06 . 92

20.12Version 1.06 vs version 1.05 . 92

20.13Version 1.05 vs version 1.03 . 92

20.14Version 1.03 vs version 1.0 . 92

20.15Version 1.00 vs version 0.98 . 93

20.16Version 0.98 vs version 0.97 . 93
20.17Version 0.97 vs version 0.96 . 93
20.18Version 0.96 vs version 0.95 . 94
20.19Version 0.95 vs version 0.92 . 94
20.20Version 0.92 vs version 0.91 . 94
20.21Version 0.91 vs version 0.90 . 94
20.22Version 0.90 vs version 0.82 . 94
20.23Version 0.82 vs version 0.81 . 94
20.24Version 0.81 vs version 0.80 . 95
20.25Version 0.80 vs version 0.79 . 95
20.26Version 0.79 vs version 0.78 . 95
20.27Version 0.78 vs version 0.77 . 95
20.28Version 0.77 vs version 0.76 . 95
20.29Version 0.76 vs version 0.75 . 95
20.30Version 0.75 vs version 0.74 . 96
20.31Version 0.74 vs version 0.63 . 96
20.32Version 0.63 vs version 0.60 . 96
20.33Version 0.60 vs version 0.55 . 97
20.34Version 0.55 vs version 0.53 . 97
20.35Version 0.53 vs version 0.50 . 97
20.36Version 0.50 vs version 0.42 . 97

.

Chapter 1

Introduction

INScore is an environment for the design of augmented, interactive, dynamic musical scores, oriented towards
unconventional uses of music notation and representation, including real-time symbolic notation capabilities.
This environment is fully controllable using Open Sound Control [OSC] messages. This document presents all
the messages supported by the system.
A scripting language has been defined as an extended textual version of OSC messages that allows you to design
scores in a modular and incremental way. This language is close to the present specification. Its syntax and
grammar are described in a separate document.

Note
Throughout the documentation, the sample code are given using scripting syntax i.e. that OSC messages are
suffixed with a semi-colon ’;’. This semi-colon is used as a message separator in INScore scripts and is not
needed when sending messages over a network. See the INScore language reference for more information.

2

Chapter 2

General format

An OSC message is made of an OSC address, followed by a message string, followed by zero to n parameters.
The message string could be viewed as the method name of the object identified by the OSC address. The OSC
address could be string or a regular expression matching several objects.

OSCMessage

OSCAddress message parameters�
�

�

EXAMPLE
Sending the message x to the object which address is /ITL/scene/score with 0.5 as parameter.

/ITL/scene/score x 0.5;

The address is similar to a Unix path and supports regular expressions as defined by the OSC specification. This
address scheme is extended to address any host and applications (see section 17 p.68).

NOTE A valid legal OSC address always starts with /ITL that is the application address and that is also used as a
discriminant for incoming messages.

OSCAddress

/
���
 identifier�

� regexp

�

�
�

�

Identifiers may include letters, hyphen, underscore and numbers (apart at first position for the latter).

identifier

[-_a-zA-Z] [-_a-zA-Z0-9]]�
�

�

Some specific nodes (like signals - see section 15.1.1) accept OSC messages without message string:

SigOSCMessage

OSCAddress parameters

2.1 Parameters

Message parameters types are the OSC types int32, float32 and OSC-string. In the remainder of this document,
they are used as terminal symbols, denoted by int32, float32 and string.

3

http://opensoundcontrol.org/

INSCORE OSC MESSAGES REFERENCE

When used in a script file, string should be single or double quoted when they include characters not allowed
in identifiers (space, punctuation marks, etc.). If an ambiguous double or single quote is part of the string, it can
be escaped using a ’\’.
Parameters types policy is relaxed: the system makes its best to convert a parameter to the expected type, which
depend on the message string. With an incorrect type and when no conversion is applied, an incorrect parameter
message error is triggered.
The system is strict regarding the number of expected parameters.

2.2 Address space

The OSC address space is made of static and dynamic nodes, hierarchically organized as in figure 2.1:

/ITL

/scene1 /scene2 /scene3

/sync /signal /object1 /object2 /object3

/sig1 /sig2

Application

Scenes

Components

Signals & Sub-components

/javascript

/log/stats

/object1/sync /signal

Figure 2.1: The OSC address space. Nodes in italic/blue are dynamic nodes.

OSC messages are accepted at any level of the hierarchy:

• the application level responds to messages for application management (udp ports management, loading
files, query messages).

• the scene level contains scores that are associated to a window and respond to specific scene management
messages. It includes a static node named stats that collects information about incoming messages, a
static log node that control an embedded log window.

• the component level contains the score components and 3 static nodes:

– a signal node that may be viewed as a folder containing signals
– a sync node, in charge of the synchronization messages
– a javascript node, that may be adressed to run javascript code dynamically.

Each component includes a static node named debug that provides debugging information.
• the signals level contains signals i.e. objects that accept data streams and that may be graphically rendered

as a scene component (see Signals and Graphic signals section 15 p.56).

NOTE Since version 1.05, each component of a score may also be a container and thus, the hierarchy described above
has a potential infinite depth level. Note also that a sync node is present at each level.

2.3 Aliases

An alias mechanism allows an arbitrary OSC address to be used in place of a real address. An alias message is
provided to describe aliases:

4

INSCORE OSC MESSAGES REFERENCE

alias

OSCAddress alias
�� �
 1

OSCAlias message [n,m]
�� �
�

�
�

�
�

�

�

�

�

�

�2

�

• [1] sets OSCAlias as an alias of OSCAddress. The alias may be optionally followed by message strings

which are then taken as implied messages. These messages can also be optionally followed by a scaling
specification.

• [2] removes OSCAddress aliases.

NOTE Regular expressions are not supported by the alias mechanism and could lead to unpredictable results.
EXAMPLE

makes the address /ITL/scene/myobject available using /1/fader1

/ITL/scene/myobject alias ’/1/fader1’;

the following input message:

/1/fader1 0.5;

will be translated into:

/ITL/scene/myobject 0.5;

create an alias with an implicit ’x’ message

/ITL/scene/myobject alias ’/1/fader1’ x;

the following input message:

/1/fader1 0.5;

will be translated into:

/ITL/scene/myobject x 0.5;

2.3.1 Scaling

In INScore, the parameter values are generally in the range [-1, 1]. However, some devices can generate messages
with their own values range (e. g. accelerometers). An optional scaling string allows to convert any input range
into the [-1, 1] range.
The general form of the scaling string is [n,m], where n and m are 2 numbers describing the minimum and
maximum input values. Any input value v is then transformed into a value v′ such that:

v′ = 2(v−n)/(n−m)−1

EXAMPLE

create an alias with an implicit ’x’ message using a scaling specification

/ITL/scene/myobject alias ’/1/fader1’ x[0,100];

the following input message:

/1/fader1 5;

will be translated into:

/ITL/scene/myobject x -0.9;

2.3.2 Using more than one implicit message

You can use an arbitrary number of message strings in an alias message. In any case, an input message with the
corresponding values is expected. For example, when the alias message has 3 messages strings, input messages

5

INSCORE OSC MESSAGES REFERENCE

are expected to have 3 associated values. These values are distributed in sequence with each message string,
which also means that the input message is translated into 3 different messages.

EXAMPLE

create an alias with implicit ’x’ ’y’ and ’angle’ messages using scaling

/ITL/scene/myobject alias ’/1/fader1’ x[0,100] y[0,100] angle;

the following input message:

/1/fader1 5 60 12;

will be translated into:

/ITL/scene/myobject x -0.9;

/ITL/scene/myobject y 0.2;

/ITL/scene/myobject angle 12;

6

Chapter 3

Common messages

Common messages are intended to control the graphic and the time space of the components of a scene. They
could be sent to any address with the form /ITL/scene or /ITL/scene/identifier where identifier
is the unique identifier of a scene component.

commonMsg

show
�� �
int32

�� �
�
�del

�� �
�lock
�� �
int32

�� �
� export
�� �
�

�exportAll
�� �

�

1
filePath�

�
�

�
�2

�

�save
�� �
�

� message
�� �
�

�
�

�

filePath �
� +

���

�

�PositionMsg

�ColorMsg

�TimeMsg

�WatchMsg

�EventMsg

�

• show: shows or hides the destination object. The parameter is interpreted as a boolean value. Default value
is 1.

• del: deletes the destination object.
• lock: if not null, cancel any del message sent to this object. However, the object will still be deleted if

one of its parents receives a del message. The parameter is interpreted as a boolean value. Default value
is 0.

• export and exportAll: exports an object to an image file respectively without or with its childrens. If the
exported object is a scene, childrens are always exported.
1) exports to the filePath name. The filePath can be relative or absolute. When the filename is not

7

INSCORE OSC MESSAGES REFERENCE

specified, exports to path/identifier.pdf. The file extension is used to infer the export format. Sup-
ported extensions and formats are: pdf, bmp, gif, jpeg, png, pgm, ppm, tiff, xbm, xpm.
2) exports to rootPath/identifier.pdf.
When the destination file is not completely specified (second form or missing extension), there is an auto-
matic numbering of output names when the destination file already exists.

• save: recursively saves objects states to a file. When a message list is present, only the specified attributes
are saved. The filePath can be relative or absolute. When relative, an absolute path is build using the
current rootPath (see application or scene current paths p.37 and p.42). The optional + parameter indicates
an append mode for the write operation. The message must be sent to the address /ITL to save the whole
application state.

• ’PositionMsg’ are absolute and relative position messages.
• ’ColorMsg’ are absolute and relative color control messages.
• ’TimeMsg’ are time management messages. They are described in section 4 p.17.
• ’WatchMsg’ are described in section 17 p.68.
• ’EventMsg’ are described in section 17.4 p.72.

EXAMPLE
Export of a scene to a given file as jpeg at the current root path:

/ITL/scene export ’myexport.jpg’;

Saving a scene to myScore.inscore at the current root path, the second form saves only the x, y and z attributes,
the third form uses the append mode:

/ITL/scene save ’myScore.inscore’;

/ITL/scene save x y z ’thePositions.inscore’;

/ITL/scene save ’myScore.inscore’ ’+’;

Hiding an object:

/ITL/scene/myObject show 0;

NOTE
when a list of attributes is specified, unknown attributes are silently ignored.

3.1 Positioning

PositionMsg

absPosMsg�
� relPosMsg

�originMsg

� transformMsg

�

Graphic position messages are absolute position or relative position messages. They can also control an object
origin and transformations like rotation around an axis.

8

INSCORE OSC MESSAGES REFERENCE

3.1.1 Absolute positioning

absPosMsg

x
���
float32

�� �
�
� y

���
float32
�� �
� z

���
float32
�� �
�angle

�� �
float32
�� �
�scale

�� �
float32
�� �

�

• x y: moves the x or y coordinate of a component. By default, components are centered on their x, y
coordinates. The coordinates space range is [-1,1].
For a scene component, -1 is the leftmost or topmost position, 1 is the rightmost or bottommost position.
[0,0] represents the center of the scene.
For the scene itself, it moves the window in the screen space and the coordinate space is orthonormal,
based on the screen lowest dimension (i.e. with a 4:3 screen, y=-1 and y=1 are respectively the exact top
and bottom of the screen, but neither x=-1 nor x=1 are the exact left and right of the screen).
Default coordinates are [0,0].

• z: sets the z order of a component. z order is actually relative to the scene components: objects of high z
order will be drawn on top of components with a lower z order. Components sharing the same z order will
be drawn in an undefined order, although the order will stay the same for as long as they live.
Default z order is 0.

• angle: sets the angle value of a component, which is used to rotate it around its center. The angle is
measured in clockwise degrees from the x axis.
Default angle value is 0.

• scale: reduce/enlarge a component. Default scale is 1.

EXAMPLE
Moving and scaling an object:

/ITL/scene/myObject x -0.9;

/ITL/scene/myObject y 0.9;

/ITL/scene/myObject scale 2.0;

3.1.2 Relative positioning

relPosMsg

dx
�� �
float32

�� �
�
�dy

�� �
float32
�� �
�dz

�� �
float32
�� �
�drotatex

�� �
float32
�� �
�drotatey

�� �
float32
�� �
�drotatez

�� �
float32
�� �
�dangle

�� �
float32
�� �
�dscale

�� �
float32
�� �

�

• dx, dy, dz messages are similar to x, y, z but the parameters represent a displacement relative to the current
target value.

9

INSCORE OSC MESSAGES REFERENCE

• drotatex, drotatey, drotatez are relative rotation messages. dangle is equivalent to drotatez and is
maintained only for compatibility reasons.

• dscale is similar to scale but the parameters represents a scale multiplying factor.

EXAMPLE
Relative displacement of an object:

/ITL/scene/myObject dx 0.1;

3.1.3 Components origin

The origin of a component is the point (xo, yo) such that the (x, y) coordinates and the (xo, yo) point
coincide graphically. For example, when the origin is the top left corner, the component top left corner is drawn
at the (x, y) coordinates.

originMsg

xorigin
�� �
float32

�� �
�
�yorigin

�� �
float32
�� �
�dxorigin

�� �
float32
�� �
�dyorigin

�� �
float32
�� �

�

• xorigin, yorigin are relative to the component coordinates space i.e. [-1,1], where -1 is the top or left
border and 1 is the bottom or right border. The default origin is [0,0] i.e. the component is centered on its
(x,y) coordinates.

• dxorigin, dyorigin represents displacement of the current xorigin or yorigin.

EXAMPLE
Setting an object graphic origin to the top left corner.

/ITL/scene/myObject xorigin -1. ;

/ITL/scene/myObject yorigin -1. ;

3.2 Components transformations

A component tranformation specifies 2D transformations of its coordinate system. It includes shear and object
rotation on x, y and z axis.

transformMsg

rotatex
�� �
�

�rotatey
�� �
�rotatez
�� �

�

float32
�� �
�

� drotatex
�� �
�

�drotatey
�� �
�drotatez
�� �

�

float32
�� �

� shear
�� �
�

�dshear
�� �

�

x y

�

10

INSCORE OSC MESSAGES REFERENCE

• rotatex rotatey rotatez: rotates the component around the corresponding axis. Parameter value ex-
presses the rotation in degrees.

• drotatex drotatey drotatez: relative rotations.
• shear transforms the component in x and y dimensions. x and y are float values expressing the transfor-

mation value in the corresponding dimension. Values should be in the range]-1, 1[.
• dshear relative shear transformation.

EXAMPLE
Rotating an object graphic on the z axis.

/ITL/scene/myObject rotatez 90. ;

NOTE angle and rotatez are equivalent. angle has been introduced before the transformation messages and is
maintained for compatibility reasons.

3.3 Color messages

ColorMsg

absColorMsg�
� relColorMsg

�

Color messages are absolute or relative color control messages. Color may be expressed in RGBA or HSBA or
using a color name.

3.3.1 Absolute color messages

absColorMsg

color�
�hsb

�red
�� �
colorvalue

�green
�� �
colorvalue

�blue
�� �
colorvalue

�alpha
�� �
colorvalue

�hue
�� �
colorvalue

�saturation
�� �
colorvalue

�brightness
�� �
colorvalue

�

red, green, blue, hue, saturation, brightness, alpha messages address a specific part of a color using the
RGB or HSB scheme.

colorvalue

int32
�� �
�

�float32
�� �

�

The value may be specified as integer or float. The data range is given in table 3.1. When the alpha component is
not specified, the color is assumed to be opaque.

11

INSCORE OSC MESSAGES REFERENCE

Component integer range float range
red [R] [0,255] [-1,1]

green [G] [0,255] [-1,1]
blue [B] [0,255] [-1,1]

alpha [A] [0,255] [-1,1]
hue [H] [0,360] [-1,1] mapped to [-180,180]

saturation [S] [0,100] [-1,1]
brightness [B] [0,100] [-1,1]

Table 3.1: Color components data ranges when expressed as integer or float.

EXAMPLE
The same alpha channel specified as integer value or as floating point value:

/ITL/scene/myObject alpha 51 ;

/ITL/scene/myObject alpha 0.2 ;

3.3.2 The color messages

color

color
�� �
 1

r
���
g

���
b
���
�

�2
r

���
g
���
b

���
a
���
�3

name
�� �
�4
hexValue
�� �

�

color sets an object color in the RGBA space. The color can be specified in different ways:

• 1 sets the color using RGB values. Alpha is not specified and the color is assumed to be opaque.
• 2 sets the color using RGBA values.
• 3 sets the color using a name among html defined names (see at https://www.w3schools.com/colors/
colors_names.asp). Name is not case sensitive.

• 4 sets the color using a single hexadecimal value in the form 0xrrggbb or 0xrrggbbaa.

The default color value is [0,0,0,255].

3.3.3 The hsb messages

hsb

hsb
�� �
 h

���
s
���
b

���
�
� h

���
s
���
b

���
a
���

�

hsb sets an object color in the HSBA space. When A is not specified, the color is assumed to be opaque.

12

https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/colors/colors_names.asp

INSCORE OSC MESSAGES REFERENCE

3.3.4 Relative color messages

relColorMsg

dcolor
�� �
color�

�dhsb
�� �
hsb

�dred
�� �
colorvalue

�dgreen
�� �
colorvalue

�dblue
�� �
colorvalue

�dhue
�� �
colorvalue

�dsaturation
�� �
colorvalue

�dbrightness
�� �
colorvalue

�dalpha
�� �
colorvalue

�

• dred, dgreen, etc. messages are similar to red, green, etc. messages but the parameters values represent
a displacement of the current target value.

• dcolor and dhsb are similar and each color parameter represents a displacement of the corresponding
target value.

EXAMPLE
Moving a color in the RGBA space:

TL/scene/myObject dcolor 10 5 0 -10 ,

will increase the red component by 10, the blue component by 5, and decrease the transparency by 10.

NOTE Objects that are carrying color information (images, SVG) don’t respond to color change but are sensitive to
transparency changes.

3.4 Pen control

Pen messages accepted by all the components and result in 2 different behaviors:

• for components types rect | ellipse | polygon | curve | line | graph | fast graph | grid,
it makes the object border visible using the pen attributes;

• for the other components and when the pen width is greater than 0, it makes the object bounding box
visible.

penMsg

penWidth
�� �
float32

�� �
�
�penColor

�� �
color

�penStyle
�� �
penstyle

�penAlpha
�� �
alphavalue

�pendAlpha
�� �
alphavalue

�

• penWidth controls the pen width. The default value is 0 (excepted for line objects, where 1.0 is the default
value). It is expressed in arbitrary units (1 is a reasonable value).

13

INSCORE OSC MESSAGES REFERENCE

• penColor controls the pen color. The color should be given in the RGBA space. The default value is
opaque black (0 0 0 255).

• penStyle controls the pen style.
• penAlpha, pendAlpha controls the pen transparency only. See section 3.3.2 p.12 for the expected

penstyle

solid
�� �
�

�dash
�� �
�dot
�� �
�dashDot
�� �
�dashDotDot
�� �

�

The pen style default value is solid.

EXAMPLE
Setting a rectangle border width and color:

/ITL/scene/rect set rect 0.5 0.5 ;

/ITL/scene/rect penWidth 2. ;

/ITL/scene/rect penColor 255 0 0 ;

3.5 The ’effect’ messages

The effect message sets a graphic effect on the target object.

effectMsg

effect
�� �
 none

�� �
�
� blur

�� �
�
�colorize

�� �
�shadow
�� �

�

�
�params

�

�

• none: removes any effect set on the target object.
• blur, colorize, shadow: sets the corresponding effect. An effect always replaces any previous effect.

The effect name is followed by optional specific effects parameters.

NOTE An effect affects the target object but also all the target slaves.

3.5.1 The blur effect

blurParams

int32
�� �
�

�blurHint

�

Blur parameters are the blur radius and a rendering hint. The radius is an int32 value. By default, it is 5 pixels.
The radius is given in device coordinates, meaning it is unaffected by scale.

14

INSCORE OSC MESSAGES REFERENCE

blurHint

performance
�� �
�

�quality
�� �
�animation
�� �

�

Use the performance hint to say that you want a faster blur, the quality hint to say that you prefer a higher
quality blur, or the animation when you want to animate the blur radius. The default hint value is performance.

EXAMPLE
Setting a 8 pixels effect on myObject

/ITL/scene/myObject effect blur 8;

3.5.2 The colorize effect

colorizeParams

float32
�� �
�

�color

�

Colorize parameters are a strength and a tint color. The strength is a float value. By default, it is 1.0. A strength
0.0 equals to no effect, while 1.0 means full colorization.
The color is given as a RGB triplet (see section 3.3.2 p.12) by default, the color value is light blue (0, 0, 192).

EXAMPLE
Setting a red colorize effect on myObject with a 0.5 strength.

/ITL/scene/myObject effect colorize 0.5 200 0 0;

3.5.3 The shadow effect

shadowParams

xoffset yoffset �
�color �

�blur

�

�

xoffset and yoffset are the shadow offset and should be given as int32 values. The default value is 8 pixels.
The offset is given in device coordinates, which means it is unaffected by scale.
The color is given as a RGBA color (see section 3.3.2 p.12) by default, the color value is a semi-transparent dark
gray (63, 63, 63, 180)
The blur radius should be given as an int32 value. By default, the blur radius is 1 pixel.

EXAMPLE
Setting a shadow effect on myObject.
The shadow offset is (10,10) pixels, the color is a transparent grey (100,100,100, 50) and the blur is 8 pixels.

/ITL/scene/myObject effect shadow 10 10 100 100 100 50 8;

3.6 The ’edit’ message

The edit message opens a small editor that allows to edit the target object attributes.

15

INSCORE OSC MESSAGES REFERENCE

editMsg

edit
�� �
 1�

�2
attributes�

�
�

�3
reset

�

• 1: without argument, the editor is initialized with all the target object attributes.
• 2: using a list of attributes, the editor is initialized with the target object corresponding attributes. Note that
set as attribute can be used to edit the object set message.

• 3: reset is used to clear the edit string stored in the object cache. It is equivalent to the ’clear’ button in
the edit dialog. Note that as long as the edit string stored in the cache is not empty, edit messages are
ignored unless followed by a reset (see below).

Each object maintains the current content of the editor, that is initialized at first edit message or when this
content is cleared. Successive call to edit will preserve the editor content unless it is cleared.

NOTE Since the editor preserves its content, it doesn’t take account of changes that may result from received messages
and thus may not reflect the target object changes. To synchronize the editor content with the current attributes
values, you can clear the editor content, which will refresh the attributes to their current values.

NOTE Although initialized with the target object attributes, the editor supports arbitrary INScore messages, i.e. ad-
dressed to any other object or even making use of extended OSC addresses.

EXAMPLE
Editing an object on double click:

/ITL/scene/myObject watch doubleClick (/ITL/scene/myObject edit);

Editing some specific attributes:

/ITL/scene/myObject watch doubleClick (/ITL/scene/myObject edit x y);

16

Chapter 4

Time management messages

4.1 Date and duration

Time messages control the time dimension of the score components. They could be sent to any address with the
form /ITL/scene/identifier where identifier is the unique identifier string of a scene component.

timeMsg

clock
�� �
�

�durClock
�� �
�date
�� �
time

�duration
�� �
time

�ddate
�� �
time

�dduration
�� �
time

�

time
1

int32
�� �
int32

�� �
�
�2

int32
�� �
�3
float32
�� �
�4
n/d
�� �

�

• 1) Time is specified as a rational value d/n where 1/1 represents a whole note.
• 2) Time may be specified with a single integer, then 1 is used as implicit denominator value.
• 3) Time may be specified as a single float value that is converted using the following approximation: let f

be the floating point date, the corresponding rational date is computed as f x 10000 / 10000.
• 4) Time may also be specified as a string in the form ’n/d’.

• clock: similar to MIDI clock message: advances the object date by 1/24 of quarter note.
• durClock: a clock message applied to duration: increases the object duration by 1/24 of quarter note.
• date: sets the time position of an object. Default value is 0/1.
• duration: changes the object duration. Default value is 1/1.
• ddate: relative time positioning message: adds the specified value to the object date.
• dduration: relative duration message: adds the specified value to the object duration.

17

INSCORE OSC MESSAGES REFERENCE

EXAMPLE
Various ways to set an object date.

/ITL/scene/myObject date 2 1 ;

/ITL/scene/myObject date 2; # the denominator is 1 (implied)

/ITL/scene/myObject date 0.5; # equivalent to 1/2

/ITL/scene/myObject date ’1/2’; # the string form

Similar ways to move an object date.

/ITL/scene/myObject clock;

/ITL/scene/myObject ddate ’1/96’;

4.2 Tempo

The tempo message is supported by all the score components. Its default value is 0. When non null, the date of
an object is moved at the corresponding tempo (e.g. with a tempo = 60, the date move will be 1/4 - a quarter note
- every second). Note that the date is refreshed at INScore time task rate.

tempoMsg

tempo
�� �
val�

�dtempo
�� �
val

�

• tempo: set an object tempo. Default value is 0.
• dtempo: relative tempo message: adds the specified value to the object tempo.

EXAMPLE
A cursor moving over a score using the tempo message.

/ITL/scene/score set gmn "[a a a a a a]"; #a short score

/ITL/scene/cursor set ellipse 0.5 0.5; #a cursor

/ITL/scene/sync cursor score; #synchonizes the cursor to the score

/ITL/scene/cursor tempo 80; #an set the tempo

18

Chapter 5

Miscellaneous messages

The following messages are supported by all the objects. They are detailed in specific sections.

miscMsgs

eval
�� �
msgsList�

�watch
�� �
�

�what �
�msgsList

�

�

�push
�� �
�pop
�� �
�map
�� �
�

�mapName

�

relation�
�del

�

�

• eval: evaluates a list of messages in the context of the receiver object. The messages can used relative
OSC addresses i.e. addresses that start with a dot (’.’). In this case, the leading ’.’ is replaced by the
receiver OSC address.

• watch: used to manage the object interaction with various events. See section 17 p.68 for more details.
• push, pop: saves and restores the object interaction state. See section 17.6 p.76 for more details.
• map: used to describe the relations between graphic and time spaces. See section 13 p.49 for more details.

19

Chapter 6

The ’set’ message

The set messages can be sent to any address with the form /ITL/scene/identifier. The global form of the
message is:

setMsg

set
�� �
type data

It sets a scene component data.
When there is no destination for the OSC address, the component is first created before being given the message.
When the target destination type doesn’t correspond to the message type, the object is replaced by an adequate
object.

6.1 Symbolic music notation

Symbolic music notation support is based on the Guido Music Notation format [GMN] or on the MusicXML
format. MusicXMl is supported via conversion to the GMN format when the MusicXML library is present.

setScore

set
�� �
 gmn

�� �
gmnString�
�gmnf

�� �
gmnFilePath

�gmnstream
�� �
gmnStream

�musicxml
�� �
xmlString

�musicxmlf
�� �
xmlFilePath

�gmn
�� �
expr

�� �
scoreExpression

�

• gmn: a Guido score defined by a GMN string.
• gmnf: a Guido score defined by a GMN file.
• gmnstream: a Guido score defined by a GMN stream (a GMN string that can be written in several times).
• musicxml: a score defined by a MusicXML string.
• musicxmlf: a score defined by a MusicXML file.
• gmn expr: a score defined by a score expression. See section 18 p.77 for the score expressions reference.

EXAMPLE
Creating a music score using a Guido Music Notation language string.

/ITL/scene/myObject set gmn "[a b g]";

20

INSCORE OSC MESSAGES REFERENCE

Creating the same music score as a stream.

/ITL/scene/myObject set gmnstream "[a";

/ITL/scene/myObject write "b";

/ITL/scene/myObject write "g";

NOTE For compatibility with previous versions, passing a MusicXML string to a gmn object or a MusicXML file to
a gmnf object may succed since the system tries to parse the content as GMN content or as MusicXML content
when the former fails.

NOTE Conversion from MusicXML to GMN could be achieved manually using a command line tool that is distributed
with the MusicXML library (see at https://github.com/dfober/libmusicxml). It allows to improve the
output GMN code afterhand.

6.2 Piano roll music notation

Piano roll music notation is based on the Guido Music Notation format [GMN].

setPianoRoll

set
�� �
 pianoroll

�� �
gmnString�
�pianorollstream

�� �
gmnStream

�pianorollf
�� �
filePath

�pianoroll
�� �
expr

�� �
scoreExpression

�

• pianoroll: a piano roll defined by a GMN string.
• pianorollstream: a piano roll defined by a GMN stream (a GMN string that can be written in several

times).
• pianorollf: a piano roll defined by a guido file (with ".gmn" extension) or by a midi file (with ".mid"

extension). Warning: url forms are not supported for midi files.
• pianoroll expr: a piano roll defined by a score expression. See section 18 p.77 for the score expressions

reference.

EXAMPLE
Creating a pianoroll using a Guido Music Notation language string.

/ITL/scene/myObject set pianoroll "[a b g]";

Creating the same piano roll as a stream.

/ITL/scene/myObject set pianorollstream "[a";

/ITL/scene/myObject write "b";

/ITL/scene/myObject write "g";

6.3 Textual components

setText

set
�� �
 txt

�� �
 string
�� �
�

� txtStream

�

�
�txtf

�� �
textFilePath

�html
�� �
string

�� �
�htmlf
�� �
htmlFilePath

�

21

https://github.com/dfober/libmusicxml

INSCORE OSC MESSAGES REFERENCE

• txt: a textual component.
• txtf: a textual component defined by a file.
• html: an html component defined by an HTML string.
• htmlf: an html component defined by an HTML file.

Text may be specified by a single quoted string or using an arbitrary count of parameters that are converted to a
single string with a space used as separator.

txtStream

string
�� �
�

�int32
�� �
�float32
�� �

�

�

�

�

EXAMPLE

Creating a text object.

/ITL/scene/myObject set txt "Hello ... world!";

Setting the content of a text object using a values stream.

/ITL/scene/myObject set txt Hello 1 world and 0.5;

6.4 Vectorial graphics

setVGraphics

set
�� �
 svg

�� �
svgString�
�svgf

�� �
svgFilePath

�rect
�� �
width height

�ellipse
�� �
width height

�polygon
�� �
 x y�

�
�

�curve
�� �
 x1 y1 x2 y2 x3 y3 x4 y4�

�
�

�arc
�� �
width height startAngle endAngle

�line
�� �
 xy

�� �
x y�
�wa

�� �
width angle

�

�

• svg: SVG graphics defined by a SVG string.
• svgf: vectorial graphics defined by a SVG file.
• rect: a rectangle specified by a width and height. Width and height are expressed in scene coordinates

space, thus a width or a height of 2 corresponds to the width or a height of the scene.
• ellipse: an ellipse specified by a width and height.

22

INSCORE OSC MESSAGES REFERENCE

• polygon: a polygon specified by a sequence of points, each point being defined by its (x,y) coordinates.
The coordinates are expressed in the scene coordinate space, but only the relative position of the points is
taken into account (i.e a polygon A = { (0,0) ; (1,1) ; (0,1) } is equivalent to a polygon B = { (1,1) ; (2,2) ;
(1,2) }).

• curve: a sequence of 4-points bezier cubic curve. If the end-point of a curve doesn’t match the start-point
of the following one, the curves are linked by a straight line. The first curve follows the last curve. The
inner space defined by the sequence of curves is filled, using the object color. The points coordinates are
handled like in a polygon.

• arc: an arc defined by its enclosing rectangle and the start and end angles. Angles are in degrees and
express counter-clockwise directions.

• line: a simple line specified by a point (x,y) expressed in scene coordinate space or by a width and angle.
The point form is used to compute a line from (0,0) to (x,y), which is next drawn centered on the scene.

EXAMPLE
Creating a rectangle with a 0.5 width and a 1.5 height.

/ITL/scene/myObject set rect 0.5 1.5;

Creating a line specified using width and angle.

/ITL/scene/myObject set line wa 1. 45.;

6.5 Signals and graphic signals

Signals are special objects that are stored in a special signal node and that may be composed in parallel to
produce graphic signals. Signals and graphic signals are decribed in section 15 p.56.
Signals and computation on signals may be based on FAUST objects that are actually signals processors. FAUST
objects are decribed in section 19.1 p.81.
For more information about the FAUST language, see at http://faust.grame.fr.

setGraphicSignal

set
�� �
 graph

�� �
signals�
�fastgraph

�� �
signals

�faust
�� �
pluginname

�� �
�faustdsp
�� �
faustcode

�faustdspf
�� �
faustfile

�

• graph: graphic of a signal. See section 15 p.56 for details about the graph objects data.
• fastgraph: fast rendering graphic signal. See also section 15 p.56.
• faust: a FAUST object as a plugin (see section 19.1)
• faustdsp: a FAUST object defined by a string (see section 19.1 p.81)
• faustdspf: a FAUST object defined by a file (see section 19.1 p.81)

6.6 Media files

Images, video and audio are supported using various formats. See section 6.9 p.25 for more details on the
supported formats.

23

http://faust.grame.fr

INSCORE OSC MESSAGES REFERENCE

setMedia

img
�� �
imgPath�

�memimg
�� �
objectPath

�video
�� �
videoPath

�audio
�� �
audioPath

�

• img: an image file. The image format is inferred from the file extension.
• memimg: a memory capture of the object given as argument. objectPath indicates the target object that is

captured with all its childrens. It may be an object name or a path to an object. Simple object names and
relative path are looked for in the receiver layer.

• video: a video file. The video format is inferred from the file extension. Note that navigation through the
video is made using its date.

• audio: an audio file. The audio format is inferred from the file extension. audio objects appear as a
waveform but this waveforom is not (yet) computed from the audio data but randomly generated.

EXAMPLE
Creating an image.

/ITL/scene/myObject set img "myImage.png";

Creating a memory image of a scene.

/ITL/scene/myObject set memimg "/ITL/scene";

NOTE
It is necessary to have an object or scene graphically rendered before a capture can be made. Since the actual
graphic rendering is made asynchronously to the model update, a sequence of messages like the following:

/ITL/scene/myObject set gmn "[a f g]";

/ITL/scene/capture set memimg myObject;

won’t work if the messages are handled by the same time task. A delay is necessary between the two messages.
To make sure all the objects have been rendered, you can use the scene endPaint event.

6.7 Miscellaneous

setMisc

set
�� �
 layer

�� �
�
�grid

�� �
int32
�� �
int32

�� �

�

• layer: a graphic layer, may be viewed as a container (see section 12 p.48).
• grid: a white transparent object that provides a predefined time to graphic mapping (see section 8.9 p.34 for

more details and section 13 p.49 for time to graphic relations). The parameters are int32 values representing
the number of columns and rows.

6.8 File based resources

Most of the types can be either expressed with the corresponding data, or by a path to a file containing the data.
For the latter form, the object type is generally suffixed with an ’f’ (e.g. txtf, htmlf, gmnf, musicxmlf, svgf,
faustf). The img, audio and video types have only a file form (and no ’f’ suffix).
A file path can be expressed as a Unix path (absolute or relative - see the scene or application rootPath message
for relative paths handling), but also as an URL. Only the http: protocol is currently supported.

24

INSCORE OSC MESSAGES REFERENCE

When the system encounters an URL, it creates an intermediate object that is in charge of retrieving the corre-
sponding data. This object has a specific url type that takes the target type and an url as arguments. It has a
graphic appearance (actually a light gray box containing the object name and the target url) that can be controled
like for any regular object.

urlType

url
�� �
targetType urlPath

The url intermediate object acts as a proxy for the target object and will transfer all its properties once the data
are ready. A client can thus interact transparently with the target adress, whatever the status of the download
request.

EXAMPLE
Creating a score using an URL:

/ITL/scene/score set gmnf "http://anyhost.adomain.org/score.gmn";

is equivalent to

/ITL/scene/score set url gmnf "http://anyhost.adomain.org/score.gmn";

NOTE The url object handles specific events : success, error and cancel (see the section 17.1.4 p.70).

6.9 The file type

setFile

file
�� �
 filePath�

�urlPath

�

• file: a generic type to handle file based objects. Actually, the file type is translated into a one of the
txtf, gmnf, img, audio or video types, according to the file extension (see table 6.1).

See also: the application rootPath message (section 9 p.37) for file based objects.

Table 6.1: File extensions supported by the file translation scheme.

file extension translated type
.txt .text txtf
.htm .html htmlf

.gmn gmnf

.xml musicxmlf

.svg svgf
.jpg .jpeg .png .gif .bmp .tiff img

.avi .wmv .mpg .mpeg .mp4 .mov .vob video
.mp3 .wav .aiff .aif, .m4a, .aac audio

.dsp faustdspf

EXAMPLE
Creating an image using the file type.

/ITL/scene/myObject set file "myImage.png";

is equivalent to

/ITL/scene/myObject set img "myImage.png";

6.10 Web objects

A score can make its content available to the Internet using specific components that provide an image of the
scene over http or websocket protocols.

25

INSCORE OSC MESSAGES REFERENCE

The httpd server depends on the Httpd server plugin and is described in section 19.3 p.86.
The websocket server provides a two-ways communication between INScore and distant clients. The server
sends notifications to client using a Screen updated text message when the scene is updated. Clients can
request an image by sending a getImage text message to the server. The server responds with a image of the
scene in png format, using a Blob type javascript object.

webobject

websocket
�� �
port frequency�

�httpd
�� �
port

�

• port: a port number for the socket communication.
• frequency: a minimum time in millisecond between two Screen updated notifications.

NOTE
A busy port prevents the server to start. The server status can be checked with the get status message.

EXAMPLE
Creating an websocket server using the port 1234 and limiting the notifications rate to one per 500 milliseconds.

/ITL/scene/myObject set websocket 1234 500;

See also: the http web server plugin (section 19.3 p.86).

26

Chapter 7

The ’get’ messages

The get messages can be sent to any valid OSC address. It is intended to query the system state. It is the
counterpart of all the messages modifying this state. The result of the query is sent to the OSC output port with
the exact syntax of the counterpart message. The global form of the message is:

getMsg

get
�� �
�

� getParam�
�

�

�

The get message without parameter is the counterpart of the set message. When addressed to a container
(the application /ITL, a scene /ITL/scene, the signal node /ITL/scene/signal) is also distributed to all the
container components.
Specific get forms may be available, depending on the component type (see sections 8.3, 9.4, 9.5.2, 14, 15.1.2,
19.1.2).
The get frame message is supported by all the components. An object frame is available for read only. It
represents the polygon that encloses the object, taking account of scaling, rotations, and shear. The polygon is
returned as a set of 4 points (x, y) expressed in the parent object coordinates space.

EXAMPLE
Sending the following request to an object which position is 0.3 0.5

/ITL/scene/myobject get x y;

will give the following messages on outpout port:

/ITL/scene/myobject x 0.3;

/ITL/scene/myobject y 0.5;

Querying an object content

/ITL/scene/myobject get;

will give the corresponding set message:

/ITL/scene/myobject set txt "Hello world!";

Querying an object frame

/ITL/scene/myobject get frame;

will give the corresponding frame message:

/ITL/scene/myobject frame -0.5 -0.25 0.50 -0.25 0.50 0.25 -0.5 0.25;

NOTE
The get width and get height messages addressed to components that have no explicit width and height (text,
images, etc.) returns 0 as long as the target component has not been graphically rendered.

27

Chapter 8

Type specific messages

Some of the messages are accepted only by specific components. This section describes the messages associated
to specific objects types.

8.1 Brush control

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

solid dense1 dense2

dense3 dense4 dense5

dense6 dense7 none

hor ver cross

bdiag fdiag diagCross

Figure 8.1: Brush styles

brushStyle message is accepted by the following components:
rect ellipse polygon curve layer.

28

INSCORE OSC MESSAGES REFERENCE

brushMsg

brushStyle
�� �
 solid

�� �
�
�dense1

�� �
�dense2
�� �
�dense3
�� �
�dense4
�� �
�dense5
�� �
�dense6
�� �
�dense7
�� �
�none
�� �
�hor
�� �
�ver
�� �
�cross
�� �
�bdiag
�� �
�fdiag
�� �
�diagCross
�� �

�

• brushStyle controls the brush style (see figure 8.1).

The brush style default value is solid.
For the layer object, the brush style default value is none.

EXAMPLE
Setting a rectangle style :

/ITL/scene/rect set rect 0.5 0.5 ;

/ITL/scene/rect brushStyle dense4;

8.2 Width and height control

width and height messages are accepted by the following components: rect | ellipse | arc | graph |
fastgraph | grid | pianoroll | pianorollf.

widthMsg

width
�� �
float32

�� �
�
�height

�� �
float32
�� �

�

NOTE Querying the width and height of any object is always supported, provided that the object has been graphically
rendered.

29

INSCORE OSC MESSAGES REFERENCE

8.3 Symbolic score

The following messages are accepted by the components types gmn | gmnstream | gmnf.

scoreMsg

page
�� �
int32

�� �
�
�dpage

�� �
int32
�� �
�pageFormat

�� �
float32
�� �
float32

�� �
�columns
�� �
int32

�� �
�rows
�� �
int32

�� �
�get
�� �
 pageCount

�� �
�
�systemCount

�� �

�

�

• page: set the score current page
• dpage: moves the score current page
• pageFormat: set the page format. The parameters are the page width and height. Note that the message

has no effect when the score already includes a \pageformat tag.
• columns: for multi pages display: set the number of columns.
• rows: for multi pages display: set the number of rows.
• pageCount: a read only attribute, gives the score pages count.
• systemCount: a read only attribute, gives the number of systems on each of the score pages. The result is

given as a list systems count ordered by page number (index 0 is page 1, etc.).

EXAMPLE
Displaying a multi-pages score on two pages starting at page 3:

/ITL/scene/myScore columns 2 ;

/ITL/scene/myScore page 3 ;

gmnstreamMsg

write
�� �
gmnCode�

�clear
�� �

�

• write: add the gmn code to the current gmn stream
• clear: reinitialize the stream

EXAMPLE
Writing a score in 3 steps:

/ITL/scene/myScore set gmnstream "[c";

/ITL/scene/myScore write " d e";

/ITL/scene/myScore write " f]";

8.4 Piano roll

The following messages are accepted by the components types pianoroll | pianorollstream | pianorollf.

30

INSCORE OSC MESSAGES REFERENCE

pianorollMsg

keyboard
�� �
int32

�� �
�
�autoVoicesColoration

�� �
int32
�� �
�measureBars

�� �
int32
�� �
�voiceColor

�� �
 int32
�� �
 color�

�
�

�
�

�

�pitchLines
�� �
 Notes

�� �
�
�

�

�clipTime
�� �
 time time�

�
�

�clipPitch
�� �
 int32

�� �
int32
�� �
�

�
�

�

• keyboard: display the keyboard on left of piano roll. Default value to 0.
• autoVoicesColoration: enable voices automatic coloration. If voiceColor is used for a voice, automatic

voices coloration do nothing for it. Default value to 0.
• measureBars: Display measure bars on piano roll. Default value to 0.
• voiceColor: set a color to a voice. The parameters are voice number (start to 1), and RGBA color (See

section 3.3.2 p.12). If not color is present, voice color is reset to default color. If voice number and color
are not present, reset all voices to default color.

• pitchLines: Display pitch lines on pianoroll. Parameters are a note list in english notation (A A# B ...)
with case insensitive. Default to all lines. An ’empty’ note (i.e. the litteral ’empty’ string) can be used to
hide all lines.

• clipTime: set time limits for piano roll (See section 4 p.17 to set a time). The two times have to be wrote
in the same format. If no time is present, time limits are reset to default.

• clipPitch: Set pitch limits to piano roll. The pitch is in midi format. If no value is present, pitch limits
are reset to default.

EXAMPLE
Set a color on voice 2 with transparency and display C and F pitch lines:

/ITL/scene/myPianoroll voiceColor 2 154 234 45 100;

/ITL/scene/myPianoroll pitchLines ’C’ ’F’;

Removes the pitch lines:

/ITL/scene/myPianoroll pitchLines empty;

Piano roll streams support the same messages than Guido streams:

pianorollstreamMsg

write
�� �
gmnCode�

�clear
�� �

�

• write: add the gmn code to the current gmn stream

31

INSCORE OSC MESSAGES REFERENCE

• clear: reinitialize the stream

EXAMPLE
Writing a pianoroll in 3 steps:

/ITL/scene/myPianoroll set pianorollstream "[c";

/ITL/scene/myPianoroll write " d e";

/ITL/scene/myPianoroll write " f]";

8.5 Audio and Video

Media objects (audio video) have their own internal time and duration that is independent from the INScore
time and duration. This time is controlled using specific messages.

media

play
�� �
int32

�� �
�
�volume float32

�� �
� rate float32
�� �
�vdate

1
int32
�� �
�

�2
int32
�� �
int32

�� �
�3
float

�

�

• play start or stop playing the media. Default value is 0.
• volume sets the audio volume. Default and maximum value is 1.
• rate sets the media playing rate. Default value is 1.
• vdate sets the current video frame or audio position. Default value is 0. Arguments are the following:

– 1) : a value in milliseconds.
– 2) : a musical time expressed as a rational. Note that musical time is converted to milliseconds using

a tempo value of 60.
– 3) : a musical time expressed as a float.

A media position may be updated while the media is playing.

Media objects support also specific queries:

mediaGet

mls
�� �
�

�vduration
�� �

�

• mls gives the media absolute duration in milliseconds.
• vduration gives the media duration in musical time. The returned value is a rational computed using the

current rate, according to a tempo value of 60.

A media object supports specific events (see section 17.1.6 p.71 for more details).

EXAMPLE
Playing a video at half speed:

/ITL/scene/video set video "Video.mp4";

/ITL/scene/video rate 0.5;

/ITL/scene/video play 1";

32

INSCORE OSC MESSAGES REFERENCE

NOTE
Depending on the video encoding and on the platform renderer, setting the video current position using the vdate
message may be aligned to key frames.
Supported audio and video formats are highly dependent on the platform, as well as media specific features (e.g.
setting the playing rate that may or may not be supported, or may behave differently).

8.6 SVG Objects

The following message is accepted by the SVG components (types svg | svgf).

svgMsg

animate
�� �
int32

�� �
�
�get animated

�� �

�

• animate: start or stop the svg animation (provided the SVG is animated). The parameter is a boolean value
(default is 0).

• animated: a get parameter only: returns whether the svg is animated or not.

NOTE
SVG objects are rendered using the Qt SVG Renderer and suffer the Qt limitations. For example and with Qt 5.5,
xlinks are not supported.

8.7 Rectangles

Rectangles (type rect) accept a radius message that can be used to draw rounded rectangles.

radiusMsg

radius
�� �
float32

�� �
float32
�� �

• radius: followed by 2 values that specify the radius on the x and y axis (default is 0 0). The values express
a percentage of the object dimensions, thus the value’s range is [0, 100].

8.8 Arcs

Arcs are portions of ellipses. Although an arc is specified by it’s set message, it supports additional messages to
control the start angles and the arc extension individually. An additional close message affects the drawing of
the arc.

arcMsg

start
�� �
float32

�� �
�
�range

�� �
float32
�� �
�dstart

�� �
float32
�� �
�drange

�� �
float32
�� �
�close

�� �
int32
�� �

�

• start: set the start angle of the arc.
• range: set the arc extension in degrees counter-clockwise.

33

INSCORE OSC MESSAGES REFERENCE

• dstart: move the start angle of the arc from the value given as parameter.
• drange: move the arc range from the value given as parameter.
• close: by default, only the curve of an arc is drawn. When the close attribute is set, lines from the arc

borders to the center of the ellipse are also drawn. The close parameter is read as a boolean value.

Angles are in degrees and express counter-clockwise directions.

8.9 The ’grid’ object

The grid object provides a pre-defined time to graphic mapping organized in columns and row. By default, it is
not visible (white, transparent) but supports all the attributes of rectangles (color, pen, effects, etc.). Each element
of a grid has a duration that is computed as the grid duration divided by the total number of elements (columns
x rows) and is placed in the time space from the date 0 to the end of the grid duration.

gridMsg

columns
�� �
int32

�� �
�
�rows

�� �
int32
�� �
�xborder

�� �
float

�yborder
�� �
float

�order
�� �
 leftright

�� �
�
�topbottom

�� �

�

�

• columns set the number of columns of the grid,
• rows set the number of rows of the grid,
• xborder set the horizontal spacing between the elements of the grid (default is 0.),
• yborder set the vertical spacing between the elements of the grid (default is 0.),
• order defines the time order of the elements. By default, elements are organized from left to right first and

from top to bottom next (leftright). The topbottom parameter changes this order from top to bottom
first and from left to right next.

EXAMPLE
Creating a 10 x 10 grid organized from top to bottom with a border:

/ITL/scene/grid set grid 10 10 ;

/ITL/scene/grid xborder 3. ;

/ITL/scene/grid yborder 3. ;

/ITL/scene/grid order topbottom ;

8.10 Arrows

Specific arrows message is accepted by the component type line. It add capability to draw arrow heads to the
begining and the end of a line object.

arrowsheadMsg

arrows
�� �
arrowStyleBegin arrowStyleEnd

• arrowStyleBegin Set the arrow head of the begining of the line.
• arrowStyleEnd Set the arrow head of the end of the line.

34

INSCORE OSC MESSAGES REFERENCE

arrowStyle

none
�� �
�

�triangle
�� �
�diamond
�� �
�disk
�� �

�

The arrow style default value is none.

8.11 Textual objects

8.11.1 Font control

Specific font messages are accepted by txt html txtf and htmlf components.

fontMsg

fontSize
�� �
int32

�� �
�
�fontFamily

�� �
string
�� �
�fontStyle

�� �
style

�fontWeight
�� �
weight

�

fontStyle

normal
�� �
�

�italic
�� �
�oblique
�� �

�

fontWeight

light
�� �
�

�demibold
�� �
�normal
�� �
�bold
�� �
�black
�� �

�

• fontSize controls the font size in pixel. The default value is 13px.
• fontFamily controls the font family. The default value is ’Arial’. If a non existing value is used, system

default font is used.
• fontStyle controls the pen style. The font style default value is normal.

• weightValue controls the font weight. The font weight default value is normal.

EXAMPLE
Setting a text object with a font family Times and bold weight:

/ITL/scene/text set txt "text sample";

/ITL/scene/text fontFamily Times;

/ITL/scene/text fontWeight bold;

35

INSCORE OSC MESSAGES REFERENCE

8.11.2 Writing

Textual objects support writing in a stream-like way.

txtwrite

write
�� �
 arg�

�
�

• write: append the arg list formatted as a string to the textual content.

EXAMPLE

/ITL/scene/text set txt "Hello";

/ITL/scene/text write "world!";

8.12 The ’debug’ nodes

Each component includes a static debug nodes provided to give information about components.

debugMsg

map
�� �
int32

�� �
�
�name

�� �
int32
�� �

�

• map is used to display the time to graphic mapping. The parameter is a int value: 0 prevents mapping
display, 1 displays only the bounding boxes and 2 displays also the dates along with the boxes. Default is
0 (no map).

• name is used to display both the object name and bounding box. The parameter is a boolean value. Default
is 0.

36

Chapter 9

Application messages

Application messages are accepted by the static OSC address /ITL.

9.1 Application management

ITLMsg

quit
�� �
�

�rootPath
�� �
path

�preprocess
�� �
file

�mouse
�� �
 show

�� �
�
�hide

�� �

�

�defaultShow
�� �
int32

�� �
�load
�� �
filePath

�read
�� �
buffer

�require
�� �
float oscMsg

�compatibility
�� �
float

�time
�� �
int32

�� �
�ticks
�� �
int32

�� �
�rate
�� �
int32

�� �
�hello
�� �
� forwardingMsg

�

• quit: requests the client application to quit.
• rootPath: rootPath of an INScore application is the default path where the application reads or writes a

file when a relative path is used for this file. The default value is the user home directory. Sending the
rootPath message without parameter resets the application path to its default value.

• preprocess: evaluates the input file script and print the result to the log window.
• mouse: hide or show the mouse pointer.

37

INSCORE OSC MESSAGES REFERENCE

• defaultShow: changes the default show status for new objects.
The default defaultShow value is 1.

• load: loads a file previously saved using the save message (see section 3 p.7). Note that the load operation
appends the new objects to the existing scene. When necessary, it is the sender responsibility to clear the
scene before loading a file. URL are supported for the file path (see section 6.8 p.24);

• read: read a buffer that is expected to contain a valid inscore script.
• require: check that the current INScore version number is equal or greater to the number given as ar-

gument. The version number is given as a float value. A message is associated to the require message,
which is triggered when the check fails. See section 17 p.68 for more details.

• compatibility: preserve INScore previous behavior. The argument corresponds to a version number,
INScore will preserve the corresponding behavior (objects scaling, default size, etc.).

• rate: changes the time task rate. Note that null values are ignored.
The default rate value is 10.

• time: sets the application current time. The time is expressed in milliseconds.
• ticks: sets the application current ticks count. The ticks count indicates the number of time tasks per-

formed by the application.
• hello: query the host IP number. The message is intended for ITL applications discovery. Answer to the

query has the following format:
IP inPort outPort errPort where IP is sent as a string and port numbers as integer values.

• forwardingMsg: application support message forwading and filtering. See section ?? p.??.

EXAMPLE
when sending the message:

/ITL hello;

the application will answer with the following message:
/ITL 192.168.0.5 7000 7001 7003

when it runs on a host which IP address is 192.168.0.5 using the default port numbers.

9.2 Ports management

ITLPortsMsg

port
�� �
int32

�� �
�
�outport

�� �
int32
�� �
�errport

�� �
int32
�� �

�

Changes the UDP port numbers:

• port defines the listening port number,
• outport defines the port used to send replies to queries,
• errport defines the port used to send error messages.

The int32 parameter should be a positive value in the range [1024-49150].
The default port, outport and errport values are 7000, 7001 and 7002.

NOTE
Error messages are sent as a single string.

9.3 System support

ITLSystem

browse
�� �
file

38

INSCORE OSC MESSAGES REFERENCE

• browse open the file given as parameter using the system default browser. The message supports URLs
that can be of type http:// , https:// or file:// . It supports also direct reference to a local file (e.g.
myfile.html) that is translated into file:// url using the application rootPath.

9.4 Application level queries

The application supports the get messages for its parameters (see section 7 p.27). In addition, it provides the
following messages to query version numbers.

ITLRequest

get
�� �
 version

�� �
�
�guido-version

�� �
�musicxml-version
�� �

�

• version: version number request.
• guido-version: Guido engine version number request.
• musicxml-version: MusicXML and Guido converter version numbers request. Returns "not available"

when the library is not found.

EXAMPLE
Querying INScore version:

/ITL get version;

will give the following as output:

/ITL version 1.00

9.5 Application static nodes

The application level provides the static nodes - stats, debug, log and ssl, available at /ITL/stats /ITL/debug,
/ITL/log and /ITL/ssl.

9.5.1 The ’stats’ nodes

ITLStats

get
�� �
�

�reset
�� �

�

• get gives the count of handled messages at OSC and UDP levels: the UDP count indicates the count of
messages received from the network, the OSC count includes the UDP count and the messages received
internally.

• reset resets the counters to zero. Note that querying the stats node increments at least the OSC the
counter.

EXAMPLE
Answer to a get message addressed to /ITL/stats

/ITL/stats osc 15 udp 10

39

INSCORE OSC MESSAGES REFERENCE

9.5.2 The ’debug’ nodes

The debug node is used to activate debugging information.

ITLdebug

osc
�� �
int23

• switch the debug mode ON or OFF. The parameter is interpreted as a boolean value. When in debug mode,
INScore sends verbose messages to the OSC error port for every message that can’t be correctly handled.
Debugging is ON by default.

EXAMPLE
Error messages generated on error port in debug mode:

error: incorrect OSC address: /ITL/stat

error: incorrect parameters: /ITL/scene/foo unknown 0.1

error: incorrect parameters: /ITL/scene/foo x "incorrectType"

9.5.3 The ’log’ nodes

The log node controls a console window that display all the messages sent to the OSC error port. Typical content
is given by the example above.

ITLLog

show
�� �
int32

�� �
�
�clear

�� �
�foreground
�� �
�wrap
�� �
int32

�� �
�write
�� �
 arg�

�
�

�save
�� �
string

�� �
�level
�� �
int32

�� �
�scale
�� �
float32

�� �

�

• show show or hides the console. The parameter is a boolean value.
• clear clear the console window.
• foreground put the console window to front.
• wrap control line wrapping of the console. The parameter is a boolean value.
• write write the arg list formatted as a string to the log window.
• save save the current log content to a file. The parameter is a file name. When expressed as a relative path,

the file is saved under the current application root path.
• level set the log level. Expected values are:

– 0 : no log
– 1 : log errors (default value)
– 2 : log errors and output of get messages

• scale scales the log window content. Default value is 1.0.

40

INSCORE OSC MESSAGES REFERENCE

9.5.4 The ’plugins’ nodes

The plugins node controls the search path for plugins. See section 19 p.81 for more information on plugins and
search strategies.

ITLPlugin

path
�� �
folder�

�reset
�� �

�

• path add folder as a user path. The system will look for plugins in this folder first.
• reset clear the current user path.

9.5.5 The ’ssl’ node

The ssl node is provided to manage certificates for encrypted communication with remote hosts. See section
11.2 p.46 for more details and section 11 p.45 for communication scheme.

41

Chapter 10

Scene messages

A scene may be viewed as a window on the score elements. Its address is /ITL/sceneIdentifier where
sceneIdentifier is a user defined scene name. A scene named scene is created on startup.

10.1 Scene control

The following messages are available at scene level, to control the scene appearance and behaviour:

sceneMsg

new
�� �
�

�del
�� �
�reset
�� �
�foreground
�� �
�rootPath
�� �
 path�

�
�

�preprocess
�� �
file

�load
�� �
filePath

�fullscreen
�� �
int32

�� �
�frameless
�� �
int32

�� �
�absolutexy
�� �
int32

�� �
�windowOpacity
�� �
int32

�� �
�commonMsg

� forwardingMsg

�

• new: creates a new scene and opens it in a new window.
• del: deletes a scene and closes the corresponding window.
• reset: clears the scene (i.e. delete all components) and resets the scene to its default state (position, size

and color).
• foreground: display scene window in foreground of all other windows in the system windows manager.

42

INSCORE OSC MESSAGES REFERENCE

• rootPath: rootPath of a scene is the default path where the scene reads or writes a file when a relative path
is used for this file. When no value has been specified, the application rootPath is used. Calling rootPath
without argument clears the scene rootPath.

• preprocess: evaluates the input file script and print the result to the log window.
• load: loads an INScore file to the scene. Note that the OSC addresses are translated to the scene OSC

address.
• fullscreen: requests the scene to switch to full screen or normal screen. The parameter is interpreted as

a boolean value. Default value is 0.
• frameless: requests the scene to switch to frameless or normal window. The parameter is interpreted as a

boolean value. Default value is 0.
• absolutexy: requests the scene to absolute or relative coordinates. Absolute coordinates are in pixels

relative to the top left corner of the screen. Relative coordinates are in the range [-1, 1] where [0,0] is the
center of the screen. The message parameter is interpreted as a boolean value. Default value is 0.

• windowOpacity: switch the scene window to opaque or transparent mode. When in transparent mode, the
scene alpha channel controls the window opacity (from completely opaque to completely transparent). In
opaque mode, the scene alpha channel controls the background brush only. Default value is 0 (transparent).

• commonMsg: a scene support the common graphic attributes. See section 3 p.7.
• forwardingMsg: a scene support message forwading and filtering. See section ?? p.??.

EXAMPLE
Setting a scene current path:

/ITL/scene rootPath "/path/to/my/folder";

Loading an INScore file:

/ITL/scene load "myscript.inscore";

will load /path/to/my/folder/myscript.inscore into the scene.
Setting a scene to fullscreen:

/ITL/scene fullscreen 1;

Creating a new score named myScore:

/ITL/myScore new;

10.2 OpenGl rendering

A scene supports optional OpenGl rendering.

openglMsg

opengl
�� �
int32

�� �

• opengl: requests the scene to switch to OpenGl or normal rendering. The parameter is interpreted as a

boolean value. Default value is 0.

NOTE
OpenGl rendering improves significantly the performance of graphic operations but at the cost of dirty rendering
for text and scores.

10.3 Scene queries

A scene may respond to queries regarding its elements:

43

INSCORE OSC MESSAGES REFERENCE

sceneQuery

get
�� �
 count

�� �
�
�rcount

�� �

�

• count: count the number of elements in the scene.
• rcount: recursively count the number of elements in the scene.

EXAMPLE
Counting the elements in a scene:

/ITL/scene get count;

will give a message like the following as output:

/ITL/scene count 200;

44

Chapter 11

Messages forwarding

The messages handled by the application or by a scene can be forwarded to arbitrary remote hosts. A filtering
mecanism can be used to have a fine control of forwarded messages.

11.1 Remote hosts list

Remote hosts lists can be set using the forward message at scene or application level. Hosts lists of the appli-
cation and of each scene are independent. At scene level, only messages handle by the scene are forwarded (ie
message for the scene itself or for one of his children object). The forward message itself can’t be forwarded. A
message from a host cannot be forwarded to him to avoid direct loop.

ITLMsgForward

forward
�� �
 1�

�2
ForwardDest�

�
�

�

• 1) removes the set of forwarded destinations,
• 2) set a list of remote hosts for forwarding.

ForwardDest
1

hostname�
�2

osc://
�� �
hostname

�3
http://
�� �
hostname

�4
https://
�� �
hostname

�5
ws://
�� �
hostname

�

�
� :

���
portnum

�

�

�

�

The forwarding mechanism can use different protocols, expressed by the destination in the form of an url, op-
tionally followed by a port number separated by a semi-colon. By default, when no port number is specified, the
default application listening port number is used (7000).

• 1) obsolete form preserved for compatibility: it’s equivalent to 2).
• 2) messages are forwarded using the OSC protocol.
• 3) messages are forwarded in textual form using the HTTP protocol.

45

INSCORE OSC MESSAGES REFERENCE

• 3) messages are forwarded in textual form using the HTTPS protocol. See section 11.2 about additional
requirements for encrypted connections.

• 5) messages are forwarded in textual form using WebSockets.

EXAMPLE
Forwards messages at application level to host1.adomain.org using OSC and the default application listening
port number (7000) and to host2.adomain.org using HTTP on port number 5100 .

/ITL forward osc://host1.adomain.org http://host2.adomain.org:5100;

11.2 SSL support

When you use https as a communication protocol, a digital certificate and an encryption key are required to es-
tablish connections between INScore and the client stations. The certificate must be signed by a trusted certificate
authority. Short term certificates are freely available on the internet.
Before issuing a forward message on an encrypted communication channel, the key and certificate must be
loaded by INScore. For this purpose, a set of messages is provided by the application ssl node /ITL/ssl:

SslSetup

key
�� �
�

�cert
�� �
�cacert
�� �

�

file

• key load ’file’ as private key
• cert load ’file’ as digital certificate
• cacert load ’file’ as intermediate certificate used as certificate authority

file is a path to a file that can be absolute or relative. Resolution of relative paths differs from the approach used
with rootPath: a path expressed as relative will always refer to the .ssh folder located at the root of the user
directory ($HOME).

11.3 Filters

The messages forwarded to arbitrary remote hosts using the forward message can be filtered to send only wanted
messages. The static filter node is use manage the filter. A static filter node is created for each scene and
one at application level. The filter can be construct with OSC address and messages.

ITLFilteringForward
1

accept
�� �
�

� item�
�

�

�

�

�2
reject
�� �
�

� item�
�

�

�

�

• 1) Replace the current accepted list by the new list or by an empty list. Item in accepted list are not filtered
by the reject item list.

46

INSCORE OSC MESSAGES REFERENCE

• 2) Replace the current accepted list by the new list or by an empty list. Item in reject list are filtered if they
not match the accept list.

When a new message is incoming, if they match to an accepted item, filter is not apply.

EXAMPLE
Filter at application level :

/ITL/filter reject /ITL/scene/line* /ITL/scene/rect;

/ITL/filter accept /ITL/scene/line2 scale arrows;

Messages with address starting with /ITL/scene/line or addressed to /ITL/scene/rect are filtered only if
message address is not /ITL/scene/line2 or if the content is not scale or arrows.

Filter at scene level :

/ITL/scene1/filter reject fontWeight /ITL/scene1/rect;

The fontWeight message and message for /ITL/scene1/rect are rejected.

NOTE
INScore is message based in a consistent way: all actions are triggered by messages (including, for example,
quitting the application). Some messages are generated internally. This is the case of ddate: an object sends
ddate messages to itself when its tempo is not zero. It is therefore recommended to filter ddate: in the absence
of a filter, a recipient who receives a tempo message will generate these messages internally, but will also receive
those that have been forwarded. Its actual tempo will then be twice the one set.

11.4 Specific queries

When using connection oriented protocols with the forward message (http, https, ws), you can query the
number of connected clients:

ITLClientsQuery

get
�� �
clients

�� �

The message must be addressed at the application level (/ITL). The answer is detailed for each type of connection-
oriented protocol in service.

47

Chapter 12

Layers

Layers may be viewed as containers or as groups. They represent a way to structure both the address space and
the graphic space.
From graphic viewpoint, a layer is a scene inside a scene. All the properties of ’rect’ components are available to
layers: position, scale, color, transparency, etc.). By default, a layer is not visible: it has no brush and no pen, but
changing the brush style (see section 8.1 p.28) - e.g. to solid - makes it visible.
From time viewpoint, a layer has the common time attributes i.e. a date, a duration.
A layer may be synchronized to other objects, including other layers. It includes a sync node and supports
synhcronization of the enclosed objects. However, synchronization is restricted to objects from the same layer
and cannot cross the border of a layer.

EXAMPLE
Creating a layer and its content:

/ITL/scene/layer1 set layer;

/ITL/scene/layer1/score set gmnf ’myscore.gmn’;

/ITL/scene/layer1/cursor set rect 0.01 0.1;

Synchronizing 2 components of a layer :

#’score’ and ’cursor’ must be enclosed in layer1

/ITL/scene/layer1/sync cursor score;

Making a layer visible :

/ITL/scene/layer1 brushStyle solid;

/ITL/scene/layer1 color 120 120 120;

12.1 Layers generalization

The idea of layer is generalized to all the type of objects: any INScore object can be a container without depth
limitation.
Layers but also any object respond to the count and rcount queries described in section 10.3 p.43.

48

Chapter 13

Mapping graphic space to time space

Time to space mapping refers to the description of relationship between an object local graphic space and its
time space. A mapping consists in a set of relations between the two spaces. INScore provides specific messages
to describes mappings and to synchronize arbitrary objects i.e. to display their time relationships in the graphic
space.

13.1 The ’map’ message

The map messages can be sent to any address with the form /ITL/scene/identifier. It is intended to
describe the target object relation to time and sets a relation between an object segmentation and a time segmen-
tation. The global form of the message is:

mapMsg

map
�� �
�

�mapName

�

relation�
�del

�

The relation parameter must be sent as a single string which format is described below. It consists in a list of
associations between the object local space and its time space expressed as segments.

relation
1

float2DSegment timeSegment�
�

�

�
� 2

int2DSegment timeSegment�
�

�

� 3
int1DSegment timeSegment�

�
�

�

Segments are expressed as a list of intervals. For a 1 dimension resource, a segment is a made of a single interval.
For a 2 dimensions resource, a segment is a made of 2 intervals: an interval on the x-axis and one on the y-axis
for graphic based resource, or an interval on columns and one on lines for text based resources. Intervals are
right-opened.
The different kind of relations corresponds to:

• [1] a relation between a 2 dimensions segmentation expressed in float values and a relative time segmenta-
tion. These segmentations are used by rect, ellipse, polygon, curve, line components.

• [2] a relation between a 2 dimensions segmentation expressed in integer values and a relative time segmen-
tation. These segmentations are used by txt, txtf, img components.

49

INSCORE OSC MESSAGES REFERENCE

• [3] a relation between a 1 dimension segmentation expressed in integer values and a relative time segmen-
tation. These segmentations are used by the graph component and express a relation between a signal
space and time.

Table 13.1 summarizes the specific local segmentation used by each component type.
The specified map can be named with an optional mapName string; this name can be further reused, during object
synchronization, to specify the mapping to use. When mapName is not specified, the mapping has a default empty
name.
The del command deletes the mapping specified with mapName, or the ’empty name’ mapping if no map name is
specified.

Table 13.1: Local segmentation type for each component

component type segmentation type
txt, txtf int2DSegments

img int2DSegments
rect, ellipse, polygon, curve float2DSegments

graph int1DSegments

13.1.1 Segments definitions

timeSegment

relativeTimeSegment�
�absoluteTimeSegment

�

relativeTimeSegment

(
���
relativeTimeInterval)

���

absoluteTimeSegment

(
���
absoluteTimeInterval)

���

float2DSegment

(
���
floatInterval floatInterval)

���

int2DSegment

(
���
intInterval intInterval)

���

int1DSegment

(
���
intInterval)

���

relativeTimeInterval

[
���
rational ,

���
rational [
���

absoluteTimeInterval

[
���
absoluteTime ,

���
absoluteTime [
���

50

INSCORE OSC MESSAGES REFERENCE

floatInterval

[
���
float32

�� �
,
���
float32

�� �
[
���

intInterval

[
���
int32

�� �
,
���
int32

�� �
[
���

Relative time is expressed as rational values where 1 represents a whole note.

rational

int32
�� �
/

���
int32
�� �

Absolute time is expressed in minutes, seconds and cents. It is automatically converted to relative time, assuming
that the tempo is 60 quarter notes per minute.

absoluteTime

min
�� �
:

���
sec
�� �
:

���
cents
�� �

EXAMPLE
Mapping an image graphic space to time:

/ITL/scene/myImage map

"([0, 67[[0, 86[) ([0/2, 1/2[)

([67, 113[[0, 86[) ([1/2, 1/1[)

([113, 153[[0, 86[) ([1/1, 3/2[)

([153, 190[[0, 86[) ([3/2, 2/1[)

([190, 235[[0, 86[) ([2/1, 5/2[)" ;

the image is horizontally segmented into 5 different graphic segments that express pixel positions. The vertical
dimension of the segments remains the same and corresponds to the interval [0, 86[. Each graphic segment is
associated to a time interval which duration is 1/2 (a half note).
The same mapping using absolute time assumes that 1 second is equal to 1 quarter note:

/ITL/scene/myImage map

"([0, 67[[0, 86[) ([0:0:0, 0:2:0[)

([67, 113[[0, 86[) ([0:2:0, 0:4:0[)

([113, 153[[0, 86[) ([0:4:0, 0:6:0[)

([153, 190[[0, 86[) ([0:6:0, 0:8:0[)

([190, 235[[0, 86[) ([0:8:0, 0:10:0[)" ;

NOTE ABOUT LOCAL SPACES

• Text objects (txt txtf) local space is expressed by intervals on columns and rows.
• Html object (html, htmlf) do not support mapping because there is not correspondence between the text

and the graphic space.
• Vectorial objects (rect, ellipse, polygon, curve, svg,...) express their local graphic space in

internal coordinates system i.e. on the [-1.,1.] interval.
• Bitmap objects (img) express their local graphic space in pixels.

13.2 The ’map+’ message

The map+ messages is similar to the map message but doesn’t replace the existing mapping data: the specified
relations are added to the existing one.

mapAddMsg

map+
�� �
�

�mapName

�

relation

51

INSCORE OSC MESSAGES REFERENCE

13.3 Mapping files

The mapf messages is similar to the map message but gives the path name of a file containing the mapping data,
along with the optional map name.

mapfMsg

mapf
�� �
�

�mapName

�

mapFilePath

13.4 Symbolic score mappings

Mapping between the graphic and time space is automatically computed for symbolic score gmn, gmnstream,
gmnf. However and depending on the application, the graphic space may be segmented in different ways, for
instance: different graphic segments for different staves, a single graphic segment traversing all a system, etc.
Thus for a symbolic score, the map message different and is only intended to select one king mapping supported
by the system.

scoreMap

map
�� �
 page

�� �
�
�system

�� �
�systemflat
�� �
�staffn
�� �
�voicen
�� �

�

• page: a page level mapping
• system: a system level mapping
• systemflat: a system level mapping without system subdivision (one graphic segment per system)
• staffn: a staff level mapping: the staff number is indicated by n, a number between 1 and the score staves

count.
• voicen: a voice level mapping: the voice number is indicated by n, a number between 1 and the score

voices count.

The default mapping for a symbolic score is unnamed but equivalent to staff1.
EXAMPLE

Requesting the mapping of the third staff of a score:

/ITL/scene/myScore map staff3;

Requesting the system mapping :

/ITL/scene/myScore map system;

NOTE
A voice may be distributed on several staves and thus a staff may contain several voices.

52

Chapter 14

Synchronization

Synchronization between components is in charge of the static sync node, automatically embedded in each
object. Its address is /ITL/.../object/sync and it supports messages to add or remove a master / slave
relation between components or to query the synchronizations state.

NOTE
A master can naturally have several slaves, but a slave can have several masters as well. In this case, it will be
drawn several times, corresponding to each master’s space.

sync

syncIdentifier
1

syncIdentifier �
� syncmode�

�
�

�

�

�2
syncIdentifier del

�� �
�3

�

�

�4
get
�� �
�

� target

�

�

• [1] the slave master form is followed by an optional synchronization mode (see below). It adds a slave /
master relation between the first and the second component.

• [2] the slave master del form removes the specified slave/master relation.
• [3] the slave form without master removes all synchronizations with the slave.
• [4] the get message is intended to query the synchronization state. The optional parameter is the identifier

of a component. The get message without parameter is equivalent to a get message addressed to each
object declared in the sync node.

syncIdentifier
1

identifier�
�2

identifier :
���
mapName

�

Synchronization identifiers indicates

• 1) the name of an object. Note that you can use regular expressions to refer to a set of objects.
• 2) the name of an object associated to a mapping name.

53

INSCORE OSC MESSAGES REFERENCE

Using the first form (i.e. without explicit mapping name), the system uses the default unnamed mapping (see
section 13.1 p.49 mappings and named mappings).
Synchronization between components has no effect if any of the required mapping is missing (see table 13.1).

EXAMPLE
Synchronizing an object on several masters:

/ITL/scene/myParent/sync mySlave myMaster1;

/ITL/scene/myParent/sync mySlave myMaster2;

Synchronizing two objects using a specific mapping (the second object is assumed to be a symbolic score (gmn,
gmnstream or gmnf) which system mapping has been previously requested):

/ITL/scene/myParent/sync mySlave myMaster:system;

14.1 Synchronization modes

Synchronizing a slave component A to a master component B has the following effect:

• A position (x) is modified to match the B time position corresponding to A date.
• depending on the optional syncStretch option, A width and/or height is modified to match the correspond-

ing B dimension (see below).
• depending on the optional syncPos option, A vertical position (y) is modified. Note that the y position

remains free and could always be modified using a dy message.
• if A date has no graphic correspondence in B mapping (the date is not mapped, or out of B mapping bounds

), A won’t be visible.

syncmode

syncHow�
� syncStretch

� syncPos

�mapName

�

14.1.1 Using the master date

syncHow

relative
�� �
�

�absolute
�� �

�

The synchronization mode makes use of the master time to graphic mapping to compute the slave position. It
may also use the master current date, depending on the following options:

• relative: the time position where the slave appears is relative to the mapping AND to the master current
date (actually, it shifts the mapping from the master current date). The relative mode is used by default.

• absolute: the time position where the slave appears corresponds to the mapping date only.

NOTE
Use of the absolute mode may take sense with nested synchronizations: let’s consider an object A, slave of B,
which is slave of C. In relative mode and if A and B receive the same clock messages, A will remain at a fixed
position on B although it is moving in time.

EXAMPLE
Describing nested synchronizations, the first one using the absolute mode:

/ITL/scene/sync slave masterSlave absolute ;

/ITL/scene/sync masterSlave master ;

54

INSCORE OSC MESSAGES REFERENCE

14.1.2 Synchronizing an object duration

syncStretch

h
���
�

� v
���
�hv
�� �

�

The synchronization stretch mode has the following effect on the slave dimensions:

• h: the slave is horizontally stretched to align its begin and end dates to the corresponding master locations.
• v: the slave is vertically stretched to the master map vertical dimension.
• hv: combines the above parameters.

By default, no stretching is applied.
EXAMPLE

Synchronizing two objects, aligning the slave duration to the corresponding master space and stretching the slave
to the master map vertical dimension:

/ITL/scene/sync mySlave myMaster hv ;

14.1.3 Controlling the slave position

syncPos

syncOver
�� �
�

�syncTop
�� �
�syncBottom
�� �
�syncFrame
�� �

�

The synchronization position mode has the following effects on the slave y position:

• syncOver: the center of the slave is aligned to the master center.
• syncTop: the bottom of the slave is aligned to the top of the master.
• syncBottom: the top of the slave is aligned to the bottom of the master.
• syncFrame: used to browse the master frame (see the next section).

The default position mode is syncOver. The y attribute of the slave remains available to displacement (dy).

NOTE
The y position of a synchronized object remains a free attribute. To control this position, you should send dy
messages.

EXAMPLE
Synchronizing two objects, aligning the slave duration to the corresponding master space, the slave being below
the master map:

/ITL/scene/sync mySlave myMaster h syncBottom;

14.1.4 The syncFrame mode

When the syncFrame mode is used, the slave is placed on the frame of the master. Typically, this frame corre-
sponds to the object bounding box that is also the object default mapping. For ellipses, arcs, lines, polygons, the
frame corresponds to the border of the object. The frame duration is the object duration.
Mappings and stretch options are ignored in syncFrame mode.

55

Chapter 15

Signals and graphic signals

The graphic representation of a signal is approached with graphic signals. As illustrated in figure 15.1, the
graphic representation of a signal could be viewed as a stream of a limited set of parameters : the y coordinate at
a time t, a thickness h and a color c. A graphic signal is a composite signal including a set of 3 parallel signals
that control these parameters. Thus the INScore library provides messages to create signals and to combine them
into graphic signals.

�

�

��

Figure 15.1: A simple graphic signal, defined at time t by a coordinate y, a thickness h and a color c

15.1 The ’signal’ static node.

A scene includes a static signal node, which OSC address is /ITL/scene/signal which may be viewed as a
container for signals. It is also used for composing signals in parallel.
The signal node supports the get message that gives the list of the defined signals and also the get connect
message that gives a list of all connections, but doesn’t take any argument.

EXAMPLE
Querying the signal node:

/ITL/scene/signal get;

will give the enclosed signals definitions:

/ITL/scene/signal/y size 200 ;

/ITL/scene/signal/h size 200 ;

And :

/ITL/scene/signal get connect;

will give the signal connections :

/ITL/scene/signal connect cos object1:method1 ;

/ITL/scene/signal connect sin object2:method2 ;

56

INSCORE OSC MESSAGES REFERENCE

15.1.1 Signal messages.

Signal messages can be sent to any address with the form /ITL/scene/signal/identifier, where identifier
is a unique signal identifier. The set of messages supported by a signal is the following:

simpleSignal
1

float32
�� �
�

�
�

�
�2

size
�� �
int32

�� �
�3
default
�� �
float32

�� �
�4
get
�� �
�

�size
�� �
�default
�� �

�

�5
reset
�� �
�6
del
�� �

�

• [1] push an arbitrary data count into the signal buffer. The expected data range is [-1,1]. Note that the
internal data buffer is a ring buffer, thus data are wrapped when the data count if greater than the buffer
size.

• [2] the size message sets the signal buffer size. When not specified, the buffer size value is the size of the
first data message.

• [3] the default message sets the default signal value. A signal default value is the value returned when a
query asks for data past the available values.

• [4] the get message without parameter gives the signal current values. The size and default parameters
are used to query the signal size and default values.

• [5] the reset message clears the signal data.
• [6] the del message deletes the signal from the signal space. Note that it is safe to delete a signal even

when used by a graphic signal.

EXAMPLE
Creating a signal with a given buffer size:

/ITL/scene/signal/mySig size 200;

Creating a signal with a given set of data (the buffer size will be the data size):

/ITL/scene/signal/mySig 0. 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1 0. -0.1 -0.2 ;

15.1.2 Composing signals in parallel.

Composing signals in parallel produces a signal which value at a time t is a vector of the composed signals
values. Thus an additional read-only attribute is defined on parallel signals : the signal dimension which is size
of the signals vector. Note that the dimension property holds also for simple signals.
The format of the messages for parallel signals is the following:

57

INSCORE OSC MESSAGES REFERENCE

parallelSignal
1

set
�� �
 signal�

�
�

�
�2 �

�projectionString

�

float32
�� �
�

�
�

�3
get
�� �
dimension

�� �

�

where

signal
4

identifier�
�5

float32
�� �

�

• [1] defines a new signal composed of the signals given as parameters. A signal parameter is defined as:
– [4] an identifier i.e. a signal name referring to an existing signal in the signal node.
– [5] or as a float value. This form is equivalent to an anonymous constant signal holding the given

value.
• [2] sets the values of the signals using a projection string. See section 15.1.3 p.58.
• [3] in addition to the get format defined for signals, a parallel signal supports the get dimension message,

that gives the number of simple signals in parallel. The dimension of a simple signal is 1.

EXAMPLE
Putting a signal y and constant signals 0.01 0. 1. 1. 1. in parallel:

/ITL/scene/signal/mySig set y 0.01 0. 1. 1. 1. ;

Querying the previously defined parallel signal:

/ITL/scene/signal/mySig get ;

will give the following output:

/ITL/scene/signal/mySig set y 0.01 0. 1. 1. 1.

NOTE
For a parallel signal:

• the get size message gives the maximum of the components size.
• the get default message gives the default value of the first signal.

15.1.3 Distributing data to signals in parallel

When signals are in parallel, a projection string may be used to distribute data over each signal. Individual
components of a parallel signal may be addressed using a projection string that is defined as follows:

projectionString

[
���
int32

�� �
�
��̃��
�

�int32
�� �

�

�

]
���

The projection string is made of a index value, followed by an optional parallel marker (˜), followed by an
optional step value, all enclosed in brackets.

58

INSCORE OSC MESSAGES REFERENCE

The index value n is the index of a target signal. When the parallel marker option is not present, the values are
directed to the target signal. Indexes start at 0.

EXAMPLE
Sending data to the second component of a parallel signal:

/ITL/scene/signal/sig ’[1]’ 0. 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1 0. ;

is equivalent to the following message (assuming that the second signal name is ’s2’):

/ITL/scene/signal/s2 0. 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1 0. ;

Note that:

• the message is ignored when n is greater than the number of signals in parallel. Default n value is 0.
• setting directly the values of a simple signal or as the projection of a parallel signal are equivalent.

The parallel marker (˜) and the step value w options affect the target signals. Let’s consider s[n] as the signal at
index n. The values are distributed in sequence and in loop to the signals s[n], s[n+w]...s[m] where m is the
greatest value of the index n+(w.i) that is less than the signal dimension. The default step value is 1.

EXAMPLE
Sending data to the second and third components of a set of 3 parallel signals:

/ITL/scene/signal/sig [1˜] 0.1 0.2 ;

is equivalent to the following messages (assuming that the signal dimension is 3):

/ITL/scene/signal/sig [1] 0.1 ;

/ITL/scene/signal/sig [2] 0.2 ;

or to the following (assuming that the target signal names are ’s2’ and ’s3’):

/ITL/scene/signal/s2 0.1;

/ITL/scene/signal/s3 0.2;

15.2 Connecting signals to graphic attributes.

A signal may be connected to one or several graphic attributes of an object. Only the common attributes (see
section 3 p.7) support this mechanism. When a connection between a signal and an object attribute is set, sending
values to the signal is equivalent to send the values to the connected object attribute. A similar behavior could
be achieved by sending the equivalent messages, however the connection mechanism is provided for efficiency
reasons and in addition, it supports values scaling.

signalcnx

connect
�� �
connection�

�disconnect
�� �
 1

connection�
�2

signal

�3
signal object

�

�

• the connect message makes a connection between a signal and one or several attributes of one or several
objects.

• the disconnect message breaks a specific connection [1] or all the connections of a given signal [2], or all
connections between a given signal and a given object [3].

connection

signal target�
�

�

59

INSCORE OSC MESSAGES REFERENCE

• signal is a name referring to an existing component of the signal node.

target

object :
���
attribute �

�[low,high]
�� �

�

�
�

�

• object is the name of an object (must be on the same hierarchy level than the signal node).
• attribute is the name of the object target attribute (same name as the method used to set the attribute,

e.g. x, angle, etc.).
• an optional scaling feature is provided with the [low,high] suffix: signal values are expected to be be-

tween -1 and 1, the scaling suffix re-scale the input values between low and high.

NOTE
Connections are restricted to one-dimensional signals as source and to one-dimensional attribute as target. This
is not a real limitation since any component of a multi dimensional attribute (e.g. color) is always available as a
single attribute (e.g. red or blue).

NOTE
A connection can’t cross the borders of a component i.e. the target object and the signal node should have the
same parent.

EXAMPLE
Connecting signals to attributes:

#connects the values of sig1 to the red attribute of the ’rect’ object

/ITL/scene/signal connect sig1 "rect:red";

connects the values of sig2 to several objects and attributes

/ITL/scene/signal connect sig2 "rect:blue:x:rotatey[0,360]" "cursor:date[0,15]";

Disconnecting some of the previous connections :
/ITL/scene/signal disconnect sig2 "cursor:date" "rect:rotatey:blue";

15.3 Graphic signals.

A graphic signal is the graphic representation of a set of parallel signals. It is created in the standard scene address
space. A simple graphic signal is defined by a parallel signal controling the y deviation value, the thickness and
the color at each time position. The color is encoded as HSBA colors (Hue, Saturation, Brightness, Transparency).
The mapping of a signal value ([-1,1]) to the HSBA color space is given by the table 15.1.

Table 15.1: HSBA color values.

parameter mapping
hue [-1,1] corresponds to [-180,180] angular degree where 0 is red.

saturation [-1,1] corresponds 0% to 100% saturation.
brigthness [-1,1] corresponds 0% (black) to 100% (white) brithgness.

transparency [-1,1] corresponds 0% to 100% tranparency.

A graphic signal responds to common component messages (section 3 p.7). Its specific messages are the follow-
ing:

graphicSignal

set
�� �
graphtype signalIdentifier�

�get
�� �
dimension

�� �

�

60

INSCORE OSC MESSAGES REFERENCE

Figure 15.2: The HSB color space

• the set message is followed by the graph type and a signalIdentifier, where signalIdentifier
must correspond to an existing signal from the signal address space. In case signalIdentifier doesn’t
exist, then a new signal is created at the signalIdentifier address with default values.

• the get dimension message gives the number of graphic signals in parallel (see section 15.3.2 p.62).

graphtype

graph�
� fastgraph

� radialgraph

�

The signal representation type is among:

• graph: a classical signal representation as illustrated in figure 15.1, where time is mapped to the x coordi-
nate.

• fastgraph: a representation similar to the graph type, using a more efficient drawing strategy, but at the
expense of a degraded graphic rendering.

• radialgraph: a signal representation where time is mapped to the polar coordinates. The rendering takes
place in the ellipse enclosed in the object dimensions.

EXAMPLE
Creating a signal and its graphic representation:

/ITL/scene/signal/y size 200 ;

use of constant anonymous signals for thickness and color

/ITL/scene/signal/sig set y 0.1 0. 1. 1. 1. ;

/ITL/scene/siggraph set graph sig ;

15.3.1 Graphic signal default values.

As mentionned above, a graphic signal expects to be connected to parallel signals having at least an y component,
a graphic thickness component and HSBA components. Thus, from graphic signal viewpoint, the expected
dimension of a signal should be equal or greater than 6. In case the signalIdentifier dimension is less than
6, the graphic signal will use the default values defined in table 15.2.

61

INSCORE OSC MESSAGES REFERENCE

Table 15.2: Graphic signal default values.

parameter default value
y 0 the center line of the graphic

thickness 0
hue 0 meaningless due to brigthness value

saturation 0 meaningless due to brigthness value
brigthness -1 black

transparency 1 opaque

15.3.2 Parallel graphic signals.

When the dimension d of a signal connected to a graphic signal is greater than 6, then the input signal is interpreted
like parallel graphic signals. More generally, the dimension n of a graphic signal is:

n | n ∈ N ∧ 6.(n−1)< d 6 6.n

where d is the dimension of the input signal.
When d is not a mutiple of 6, then the last graphic signal makes use of the default values mentionned above.

EXAMPLE
Creating parallel graphic signals:

/ITL/scene/signal/y1 size 200 ;

/ITL/scene/signal/y2 size 200 ;

use of constant anonymous signals for thickness and color

/ITL/scene/signal/sig1 set y1 0.1 0. 1. 1. 1. ;

use a different color for ’sig2’

/ITL/scene/signal/sig2 set y2 0.1 0.6 1. 1. 1. ;

put ’sig1’ and ’sig2’ in parallel

/ITL/scene/signal/sig set sig1 sig2; #’sig’ dimension is 12

/ITL/scene/siggraph set graph sig;

NOTE
Using data projection may be convenient when the input signal represents interleaved data. For example, the
projection string [n˜6] distribute data over similar components of a set of graphic signals, where n represents the
index of the graphic signal target component.

62

Chapter 16

Sensors

INScore supports various sensors, which can be viewed as objects or as signals. When created as a signal node,
a sensor behaves like any signal but may provide some additional features (like calibration). When created as a
score element, a sensor has no graphical appearance and provides specific sensor events and features.
Table 16 gives the list of supported sensors names.

name values description
accelerometer x, y, z acceleration on the x, y, and z axis
ambient light light level ambient light value

compass azimuth, azimuth is in degrees from magnetic north in a clockwise direction
gyroscope x, y, z the angular velocity around the x, y, and z axis

light lux the light level measured as lux
magnetometer x, y, z the raw magnetic flux density measured on th x, y and z axis

orientation orientation the device orientation
proximity close a boolean value

rotation x, y, z the rotation around the x, y and z axis
tilt x, y the amount of tilt on the x and y axis.

Table 16.1: Sensors names and description

NOTE
All the sensors won’t likely be available on a given device. In case a sensor is not supported, an error message is
generated at creation request and the creation process fails.

16.1 Sensors as signals

A sensor is viewed as a signal when created in a signal node using pre-defined signal names which are listed
in table 16.1. Values provided on different axis (e.g. acceleration on the x, y, and z axis) are available from the
sensor subnodes, also listed this table.

EXAMPLE
Creating a rotation sensor with a 200 values buffer size.

/ITL/scene/signal/rotation size 200;

Getting accelerometer values on the x axis.

/ITL/scene/signal/accelerometer/x get;

NOTE
The rotation sensor may or may not have a z component however, the z signal is always present but set to 0
when no z component is available. A specific message is provided to get the z component status (see section
16.6.3 p.67).

63

INSCORE OSC MESSAGES REFERENCE

sensor signal name subnodes
accelerometer accelerometer x, y, z
ambient light ambientlight none

compass compass none
gyroscope gyroscope x, y, z

light light none
magnetometer magnetometer x, y, z

orientation orientation none
proximity proximity none

rotation rotation x, y, [z]
tilt tilt x, y

Table 16.2: Sensor’s signal names and subnodes

16.2 Sensors as nodes

A sensor is viewed as a regular INScore node when created outside a signal node and using one of the sensors
types defined below. A sensor node has no graphical appearance but has the position attributes of an INScore
object (x, y, z and scale).

sensorSet

set accelerometer
�� �
�

�ambientlight
�� �
�compass
�� �
�gyroscope
�� �
�light
�� �
�magnetometer
�� �
�orientation
�� �
�proximity
�� �
�rotation
�� �
�tilt
�� �

�

Values generated by a sensor are available using its x, y and z attributes. Depending on the sensor type, y and z
may be useless. Note also that events generated in the context of a sensor have the variables $x, $y and $z set
with the current sensor values (see section 17.5.2 p.74).

EXAMPLE
Creating a proximity sensor, querying it’s value and watching the value changes.

/ITL/scene/sensor set proximity;

/ITL/scene/sensor get x;

/ITL/scene/sensor watch newData (/ITL/scene/score show ’$x’);

16.3 Values

Values generated by the sensors depends on the sensor type and on the the sensor instance (i.e. whether created
as signal or as node). Table 16.3 presents the values range for the node and the signal instances. The rationale is
that nodes values are raw sensor values while signal values are mapped to the signal range i.e. [-1,1]. Actually,

64

INSCORE OSC MESSAGES REFERENCE

sensor node values signal values comment
accelerometer [-v,v] [-1,1] depends on the calibration
ambient light 0,1,2,3,4,5 [-1,1] see the note about ambient light below

compass [-180,180] [-1,1]
gyroscope [-v,v] [-1,1] depends on the calibration

light [0,v] [-1,1] depends on the calibration
magnetometer [-v,v] [-1,1]

orientation 0,1,2,3,4,5,6 [-1,1] see the note about orientation below
proximity 0,1 [-1,1] a boolean value mapped to -1, 1

rotation x [-90, 90] [-1,1]
y [-180, 180] [-1,1]
z [-180, 180] [-1,1]

tilt [-90,90] [-1,1]

Table 16.3: Sensor’s values as node and as signal

the mapping of the raw values depends on the sensor calibration that can be automatically or manually adjusted.
See the section about calibration below.

NOTE ABOUT AMBIENT LIGHT
Ambient light is measured using discrete values ranging from 0 to 5, where 0 means undefined and 1 to 5 goes
from dark to very bright.
A value v is mapped to (v∗0.4−1)

NOTE ABOUT ORIENTATION
Orientation is measured using discrete values ranging from 0 to 6, where 0 means undefined and 1 to 6 represents
the following orientations:

• 1: the Top edge of the device is pointing up.
• 2: the Face of the device is pointing up.
• 3: the Left edge of the device is pointing up.
• 4: the Face of the device is pointing down.
• 5: the Right edge of the device is pointing up.
• 6: the Top edge of the device is pointing down.

A value v is mapped to (v/3−1)
In a given way and from values 2 to 5, the device may be viewed as rotating clockwise. A counter-clockwise
option is also supported, see section 16.6.4 p.67.

16.4 Calibration

Calibration of sensor values may be viewed as scaling and makes use of the common object’s scale attribute. By
default, the scale value is 1.0 when the sensor is a regular node. For signal nodes, the default scale value is given
by the table 16.4. These values have been choosen to map the raw values to the signal range but of course this
mapping depends on the device and may greatly vary. In order to accommodate these variations but also to cope
with different requirements, scaling can be manually adjusted to any arbitrary value using the scale message, or
automatically adjusted to measured peak values using the autoscale message.

NOTE ABOUT AUTO-SCALING
Auto-scaling consists in measuring the peak of the absolute values of a sensor during a period. The sensor
scale value is next adjusted to 1/peak (see also the sensor common messages in section 16.5). Auto-scaling is
supported by all the sensors, although

16.5 Sensor common messages

All sensors support a common set of message.

65

INSCORE OSC MESSAGES REFERENCE

sensor signal scale comment
accelerometer 1/g where g is the gravity on earth i.e. 9.81
ambient light 0.4 see the note about ambient light above

compass 1 / 180
gyroscope 1 / 90

light 1 / 200 an arbitrary lux value (considered as
magnetometer 10000

orientation 1/3 see the note about orientation above
proximity 1.0 the false value is shifted to -1

rotation 1 / 180 for the x value, the scale is multiplied by 2
tilt 1 / 90

Table 16.4: Sensor as signal default scaling

sensorCommon

run
�� �
int32

�� �
�
�smooth

�� �
float32
�� �
�scale

�� �
float32
�� �
�autoscale

�� �
int32
�� �
�reset

�� �

�

• run: takes a boolean value as parameter. When true, the sensor starts to generate values. Default value is
false.

• smooth: applies exponential smoothing to the sensor values. At a time t, the sensor value is computed as:
st = α.vt +(1−α).st−1 where vt is the current sensor value and 0 6 α 6 1. The parameter is the smoothing
factor α. Default value is 1.

• scale: sensor values are multiplied by the scale. Default scale is dependent on the sensor type. See table
16.4 for the default scale values.

• autoscale: start or stop the auto-scaling process. Default value is false. See the note about auto scaling
above. Note that a sensor must be running for the auto-scaling process to take effect.

• reset: reset the smoothing factor and the scale to their default values.

16.6 Sensor specific messages

16.6.1 Accelerometer sensor

accelerometerMsg

mode
�� �
 combined

�� �
�
�gravity

�� �
�user
�� �

�

• mode: the acceleration mode controls how acceleration values are reported.

– gravity: only the acceleration caused by gravity is reported. Movements of the device caused by the
user have no effect other than changing the direction when the device is rotated.

– user: only the acceleration caused by the user moving the device is reported, the effect of gravity is
canceled out. A device at rest therefore should report values of, or close to, zero.

– combined: both the acceleration caused by gravity and the acceleration caused by the user moving
the device is reported combined.

66

INSCORE OSC MESSAGES REFERENCE

Default value is combined.

NOTE ABOUT MODES
Acceleration caused by gravity and acceleration caused by the user moving the device are physically impossible
to distinguish because of general relativity. Most devices use sensor fusion to figure out which parts of the
acceleration is caused by gravity, for example by using a rotation sensor to calculate the gravity direction and
assuming a fixed magnitude for gravity. Therefore the result is only an approximation and may be inaccurate.
The combined mode is the most accurate one, as it does not involve approximating the gravity.

16.6.2 Magnetometer sensor

magnetometerMsg

mode
�� �
 raw

�� �
�
�geomagnetic

�� �

�

The magnetometer can report on either raw magnetic flux values or geomagnetic flux values. The primary differ-
ence between raw and geomagnetic values is that extra processing is done to eliminate local magnetic interference
from the geomagnetic values so they represent only the effect of the Earth’s magnetic field. This process is not
perfect and the accuracy of each reading may change. Default value is raw.

16.6.3 Rotation sensor

rotationMsg

get
�� �
hasZ

�� �

z angle availability of the rotation sensor can be queried using hasZ. The returned value is a boolean value.

16.6.4 Orientation sensor

orientationMsg

mode
�� �
 clockwise

�� �
�
�counterClockwise

�� �

�

• mode: selects how the device position is mapped to successive values. Default value is clockwise. See
table 16.6.4 for the detail of the positions and values.

value clockwise counter clockwise
1 Top edge up Top edge up
2 Face up Face up
3 Left edge up Right edge up
4 Face down Face down
5 Right edge up Left edge up
6 Top edge down Top edge down

Table 16.5: Device positions and values in different modes.

16.6.5 Tilt sensor

tiltMsg

calibrate
�� �

• calibrate: calibrates the tilt sensor: uses the current tilt angles as 0.

67

Chapter 17

Events and Interaction

Interaction messages are user defined messages associated to events and triggered when these events occur. These
messages accept variables as message arguments.
Events are typical user interface events (mouse or touch events), extended in the time domain and to specific
objects or engine properties. Starting from INScore version 1.20, the modification of any object attribute may be
viewed as an event and user defined events have also been introduced (see section 17.2 p.71 for more details).
The general form of the message to watch an event is the following:

interactMsg

watch
�� �
�

�watch+
�� �

�

1�
�what

2�
�3

(
���
 message�

� ,
���

�

)
���

�4
message

�

�

what represents the event to watch and message is a list of associated messages, separated by a comma. A colon
(’:’) is also supported as separator (to avoid issues with comma in Max).

1 : clear all the messages for all the events.
2 : clear the messages associated to the what event.
3 : associate a list of messages to the what event. With watch, the messages replace previously associated

messages. Using watch+, the messages are appended to the messages currently associated to the event.
4 : associate or add a single message to the what event. This form is provided for compatibility with previous

versions.

NOTE
The [1] and [2] form has no effect with the watch+ message.
In some environments, the comma has a special meaning, making tricky to use it as a message separator. This is
why ’:’ is also accepted as separator in OSC messages lists.
The get watch message gives all the watch messages of a node, but doesn’t take any argument.

message�
�addressPrefix

�

OSCAddress �
� parameters�

�variable

�

�
�

�

�

68

INSCORE OSC MESSAGES REFERENCE

The associated messages are any valid OSC message (not restricted to the INScore message set), with an extended
address scheme, supporting IP addresses or host names and udp port number to be specified as OSC addresses
prefix. The message parameters are any valid OSC type or variable (see section 17.5).

addressPrefix

IPAddress�
�hostname

�

:
���
port

EXAMPLE
An extended address to send messages to localhost on port 12000:

localhost:12000/your/osc/address;

17.1 Internal events

Internal events are triggered by the user interaction (mouse or touch events) or by the engine internal functionning.

17.1.1 Mouse events

User interface events are typical mouse events:

mouseEvent

mouseDown
�� �
�

�mouseUp
�� �
�mouseEnter
�� �
�mouseLeave
�� �
�mouseMove
�� �
�doubleClick
�� �

�

EXAMPLE
Triggering a message on mouse down:

/ITL/scene/myObject watch mouseDown (/ITL/scene/myObject show 0);

the object hides itself on mouse click.
Triggering a message on mouse down but addressed to another host on udp port 12100:

/ITL/scene/myObject watch mouseDown (host.domain.org:12100/an/address start);

NOTE
UI events are not supported by objects that are synchronized as slave.
Mouse events can be simulated using a event message:

uievt

event
�� �
mouseEvent x y

where mouseEvent is one of the events described above, x and y are integer values giving the click position,
expressed in pixels and relative to the target object.

EXAMPLE
Simulating a mouse down at position 10, 10 :

/ITL/scene/myObject event mouseDown 10 10;

69

INSCORE OSC MESSAGES REFERENCE

17.1.2 Touch events

Depending on the display device, multi-touch events are supported by INScore :

touchEvent

touchBegin
�� �
�

�touchEnd
�� �
�touchUpdate
�� �

�

A typical sequence of generated events consists in a touchBegin event, followed by touchUpdate events and
closed by a touchEnd.

17.1.3 Time events

Events are also defined on the time domain:

timeEvent

timeEnter
�� �
time time�

�timeLeave
�� �
time time

�durEnter
�� �
time time

�durLeave
�� �
time time

�

Each event takes a time interval as parameter, defined by two time specifications (see section 4 p.17 for the time
format)

• timeEnter, timeLeave are triggered when an object date is moved to or out of a watched time interval,
• durEnter, durLeave are triggered when an object duration is moved to or out of a watched time interval.

EXAMPLE
An object that moves a score to a given page number when it enters its time zone.

/ITL/scene/myObject watch timeEnter 10/1 18/1 (/ITL/scene/score page 2);

17.1.4 URL events

url objects (i.e. intermediate objects for URL based objects (see section 6.8 p.24) support specific events,
intended to reflect the transaction state:

urlEvent

success
�� �
�

�error
�� �
�cancel
�� �

�

• success is triggered when the data have been downloaded,
• error is triggered when an error has occurred during the download,
• cancel is triggered when the target url or the object type is changed while downloading.

EXAMPLE
Triggering an error message in case of failure :

/ITL/scene/score set gmnf "http://ahost.adomain.org/score.gmn";

/ITL/scene/score watch error(

/ITL/scene/status set txt "Failed to download file"

);

70

INSCORE OSC MESSAGES REFERENCE

17.1.5 Miscellaneous events

miscEvent

export
�� �
�

�newData
�� �

�

• the export event is supported by all the components. It is triggered after an export message has been
handled and could be used to simulate synchronous exports.

• the newData event is supported by all the components. It is triggered when the object specific data are
modified (typically using the set message).

17.1.6 Type specific events

specificEvent

pageCount
�� �
�

�newElement
�� �
�endPaint
�� �
�error
�� �
�ready
�� �
�end
�� �

�

• the pageCount event is supported by all the symbolic score components (gmn(f), gmnstream, musicxml(f)).
It is triggered when the page count of the score changes. It is mainly intended to manage variable scores
like gmnstream.

• the newElement event is supported at scene level only and triggered when a new element is added to the
scene.

• the endPaint event is supported at scene level only and triggered after a scene has been painted.
• the error event is supported at application level and triggered when an error occurs while receiving mes-

sages. Typically you can use of this event to open the log window (/ITL/log show 1)
• the ready event is supported by media objects (audio and video). It is triggered when media data (dura-

tion, graphic dimensions) are available.
• the end event is supported by media objects (audio and video). It is triggered when a media is playing and

reaches the end of the media. In this case, the object play status is automatically switched to 0 to reflect
the actual player state.

EXAMPLE
Displaying a welcome message to new elements:

/ITL/scene watch newElement (/ITL/scene/msg set txt "Welcome");

17.2 Attribute based events

Attribute based events includes the whole set of messages that are supported by an object: x, y, color, etc.
but also type specific messages. These events are triggered when a message has been succesfully processed.
However, you shouldn’t assume that the attribute value has been changed: when a message sets an attribute to it’s
current value, it is succesully processed and the corresponding event - if any - is triggered.

EXAMPLE
Watching an object x coordinate change:

/ITL/scene/myObject watch x (/ITL/scene/msg set txt "myObject moved");

71

INSCORE OSC MESSAGES REFERENCE

NOTE
Watching the newData event is equivalent to watch the set attribute. However, the newData event is triggered
only when the object state is changed.

WARNING
With the event’s generalization to any object attribute, a one tick delay has been introduced to all events. Thus
the associated messages are not processed synchronously to the event but posted to be processed by the next time
task. This delay has been introduced to avoid freezing the system in case of loops. However, it introduces also
a pitfall in interaction design, when message based variables are used (see section 17.5.5 p.75): message based
variables are evaluated at the event time while messages are processed by the next time task, thus the following
messages won’t produce the expected result:

/ITL/scene/myObject watch x (

/ITL/scene/A x ’$(/ITL/scene/myObject get x)’,

/ITL/scene/B x ’$(/ITL/scene/A get x)’

);

actually, when the $(/ITL/scene/A get x) variable is evaluated, the preceding message that sets the x attribute
of A has not been already processed. One workaround consists in splitting the interaction in several parts, making
sure that the messages are processed e.g.

/ITL/scene/myObject watch x (/ITL/scene/A x ’$(/ITL/scene/myObject get x)’);

/ITL/scene/A watch x (/ITL/scene/B x ’$(/ITL/scene/A get x)’);

17.3 User defined events

INScore events supports user defined events. The name of user defined events must start with a capital letter and
be composed of capital letters and/or numbers. Other characters are reserved for INScore use.
Messages attached to user defined events accept regular variables (although the position variables are useless),
but they accept also any number of a variables which names are $1, ... $i and which values are taken from the
event call arguments (see section 17.5.6 p.75).
User defined events can only be triggered using the event message (see section 17.4 p.72).

EXAMPLE
Watching and triggering a user defined event:

/ITL/scene/myObject watch MYEVENT (/ITL/scene/msg set txt "MYEVENT occured!");

/ITL/scene/myObject event MYEVENT;

Defining high level abstractions:

/ITL/scene/myObject watch MOVEABC (

/ITL/scene/a x $1,

/ITL/scene/b x $2,

/ITL/scene/C x $3

);

/ITL/scene/myObject event MOVEABC -0.4 0.1 0.6;

17.4 The ’event’ message

The event message may be used to triggered events. It’s the only way to trigger user defined events. It may be
used also to simulate user interface events (like mouse events).

72

INSCORE OSC MESSAGES REFERENCE

eventMsg

event
�� �
 1

mouseEvent�
� touchEvent

�

float32
�� �
float32

�� �
�
�2

userEvent �
� var�

�
�

�

�3
eventName

�

• 1: this form is intended to simulate mouse or touch event. It must be followed by the x and y coordinates of

the interaction point. Coordinates express a position in pixels (the top left corner of the object is in [0,0]).
• 2: triggers a user defined event. It accepts any number of arguments, that are then expanded in place of

the variables $1 ... $i. User defined events may be viewed as functions with arbitrary parameters; however
parameters count and type is not checked.

• 3: triggers any other event.

NOTE
Time events are excluded from the event message supported events: to trigger a time event, you can use a date
message.

17.5 Variables

Variables are values computed when an event is triggered. These values are send in place of the variable. A
variable name starts with a ’$’ sign.

17.5.1 Position variables

Position variables reflects the current mouse position for mouse events or the current touch position for touch
events. For attribute based events, the x and y variables are set to the target object current position and the other
variables are undefined. For other events, the position variables are set to 0.

posVar

xy�
�absx

�� �
�absy
�� �
�sx
�� �
�sy
�� �

�

where

xy

x
���
�

� y
���

�

�
�[low,high]

�� �

�

• $x $y: denotes the mouse pointer position at the time of the event. The values are in the range [0,1]
where 1 is the object size in the x or y dimension. The value is computed according to the object origin:

73

INSCORE OSC MESSAGES REFERENCE

it represents the mouse pointer distance from the object x or y origin (see 3.1.3 p.10). $x and $y variables
support an optional range in the form [low, high] that transforms the [0,1] values range into the [low,
high] range.

• $absx $absy: denotes the mouse pointer absolute position at the time of the event. The values represent a
pixel position relative to the top-left point of the target object. Note that this position is unaffected by scale.
Note also that the values are not clipped to the object dimensions and could exceed its width or height or
become negative in case of mouse move events.

• $sx $sy: denotes the mouse pointer position in the scene coordinates space.

EXAMPLE
An object that follows mouse move.

/ITL/scene/myObject watch mouseDown (

/ITL/scene/myObject x ’$sx’,

/ITL/scene/myObject y ’$sy’);

17.5.2 Sensor variables

Sensors values are available using the $x, $y and $z variables, for events generated in the context of a sen-
sor.

xyz

x
���
�

� y
���
� z
���

�

�
�[low,high]

�� �

�

Note that depending on the sensor type, the $y and $z variables may be useless.

17.5.3 Time variables

Time variables reflects the date corresponding to the current mouse position for mouse events. For attribute based
events, the time variables are set to the target object current time position. They are set to 0 for the other events.

timeVar

date
�� �
�

�rdate
�� �

�

�
� :

���
mapname

�

�
�[n/d]

�� �

�

�
� %

���
f
���

�

• $date: denotes the object date corresponding to the mouse pointer position at the time of the event. It
is optionnaly followed by a colon and the name of the mapping to be used to compute the date. The
$date variable is replaced by its rational value (i.e. two integers values). The optional rational enclosed
in brackets may be used to indicate a quantification: the date value is rounded to an integer count of the
specified rational value. The optional %f may be used to get the date delivered as a float value.

• $rdate: is similar to $date but ignores the target current date: the date is relative to the object mapping
only.

NOTE
A variable can be used several times in a message, but several $date variables must always refer to the same
mapping.

EXAMPLE
Sending the current date as a float value to an external application:

/ITL/scene/myObject watch mouseDown (targetHost:12000/date ’$date%f’);

74

INSCORE OSC MESSAGES REFERENCE

17.5.4 Miscellaneous variables

variable

name
�� �
�

�scene
�� �
�address
�� �

�

• $name is replaced by the target object name.
• $scene is replaced by the target object scene name.
• $address is replaced by the target object OSC address.

NOTE
For the newElement event, the target object is the new element.

EXAMPLE
Using an object name:

/ITL/scene watch newElement (/ITL/scene/welcome set txt "Welcome" ’$name’);

17.5.5 Message based variables

A message based variable is a variable containing an OSC message which will be evaluated at the time of the
event. They are supported by all kind of events. Like the variables above, a message based variable starts with a
’$’ sign followed by a valid ’get’ message enclosed in parenthesis:

msgVar

(
���
oscaddress get

�� �
�
�params

�

)
���

The evaluation of a ’get’ message produces a message or a list of messages. The message based variable will be
replaced by the parameters of the messages resulting from the evaluation of the ’get’ message. Note that all the
’get’ messages attached to an event are evaluated at the same time.

EXAMPLE
An object that takes the x position of another object on mouse down:

/ITL/scene/myObject watch mouseDown

(/ITL/scene/myObject x ’$(/ITL/scene/obj get x)’);

17.5.6 Variables for user defined events

Messages associated to user defined events accept any number of a variables which names are $1, ... $i and
which values are taken from the event call arguments. These events may be viewed as functions with arbitrary
parameters; however parameters count and type is not checked: arguments in excess are ignored and variables
without corresponding argument (e.g. $3 when only 2 arguments are available) are left unexpanded.

17.5.7 OSC address variables

The OSC address of a message associated to an event supports the following variables:

• $self: replaced by the object name.
• $scene: replaced by the scene name.

EXAMPLE
Requesting a set of objects to send a message to themselves on a mouse event:

/ITL/scene/* watch mouseDown #request all the objects of the scene

(/ITL/scene/$self x ’$sx’); #to send a message to themselves

75

INSCORE OSC MESSAGES REFERENCE

17.6 Interaction state management

For a given object, its interaction state (i.e. the watched events and the associated messages) can be saved and
restored.

stateMsg

push
�� �
�

�pop
�� �

�

Interaction states are managed using a stack where the states are pushed to or popped from.

• push: push the current interaction state on top of the stack.
• pop: replace the current interaction state with the one popped from the top of the stack.

The different states stored in this stack can be obtain with the message :

stackMsg

get
�� �
stack

�� �

NOTE

The effect of a pop message addressed to an object with an empty stack is to clear the object current interaction
state.

17.7 File watcher

The fileWatcher is a static node of a scene that is intended to watch file modifications.
It receives messages at the address /ITL/scene/fileWatcher.
The fileWatcher support the watch and watch+ messages as described in section 17 p.68 with a file name used
in place of the what parameter.

fileWatcher

watch
�� �
�

�watch+
�� �

�

�
�filePath �

� message�
� ,

���

�

�

�

EXAMPLE
Reload an INScore script on file modification:

/ITL/scene/fileWatcher watch ’myScript.inscore’

(/ITL/scene load ’myScript.inscore’);

NOTE
Some text editors delete the target file before saving. In this case, it breaks the file watching system and thus, it
doesn’t work as expected.

76

Chapter 18

Score expressions

Score expressions allows to defines score objects (gmn or pianoroll) by dynamically combine various resources
using a formal expression. To define such object one should use the basic set messages using a score expressions
as arguments:

EXAMPLE
The following example defines a gmn and a pianoroll object using score expressions, the meaning of the ex-
pression is explained further.

/ITL/scene/score set gmn expr(seq [a] [b]);

/ITL/scene/pianoroll set pianoroll expr(score);

18.1 General Syntax

A score expression always starts with expr(and ends with), then 2 syntaxes are handled:

EvaluableExpression

expr
�� �
(

���
 1
operator score score�

�2
score

�

)
���

• 1: Define an expression as an operation combining two scores. operator is the name of the operation used
to combine them (see Section 18.2 for operators list), and score are the arguments passed to the operator
(see Section 18.3 for arguments specification).

• 2: Define on expression using a single score. This syntax is useful when defining an object as a dynamic
copy of an other existing object or file.

Each of these tokens can, of course, be separated by spaces, tabulations or carriage returns (allowing multiline
expression definition).
When defining an object using a score expressions, INScore will parse it, construct an internal representation and
finally evaluate it, reducing the formal expressions to a valid GMN string.

EXAMPLE
Creating a guido object by sequencing two guido string

/ITL/scene/score set gmn expr(seq "[c d e]" "[f g h]");

is equivalent to

/ITL/scene/score set gmn "[c d e f g h]";

18.2 Score Operators

All the score operators of INScore make use of guido operators implemented in the GuidoAR library.

77

INSCORE OSC MESSAGES REFERENCE

operation arguments description
seq s1 s2 puts the scores s1 and s2 in sequence
par s1 s2 puts the scores s1 and s2 in parallel

rpar s1 s2 puts the scores s1 and s2 in parallel, right aligned
top s1 s2 takes the n first voices of s1 where n is s2 voices count

bottom s1 s2 cut the n first voices of s1 where n is s2 voices count
head s1 s2 takes the head of s1 up to s2 duration

evhead s1 s2 takes the n first events of s1 where n is the event’s count of s2
tail s1 s2 cut the beginning of s1 up to the duration of s2

evtail s1 s2 cut the n first events of s1 where n is the event’s count of s2
transpose s1 s2 transposes s1 so its first note of its first voice match s2 one
duration s1 s2 stretches s1 to the duration of s2

if not used carefully, this operator can output impossible to display rhythm
pitch s1 s2 applies the pitches of s1 to s2 in a loop

rhythm s1 s2 applies the rhythm of s1 to s2 in a loop

18.3 Score Arguments

The syntax for arguments is quite permissive and various resources can be used as arguments for score expres-
sions. In any case, when evaluating the expression, all the arguments will be reduce to GMN string so they can
then be processed by the operators.

Argument

GmnCode�
��

� &
���
�∼
���

�

filepath�
�ScoreObject

�

�EvaluableExpression

�

Arguments specification

• GmnCode are not evaluated, passed as they are to operators. Both GMN and MusicXML string are sup-
ported.

• filepath: on evaluation INScore read all the content of the file. Again, both GMN and MusicXML are
supported. filepath handle absolute or relative path (from the scene rootPath) as well as url.

• ScoreObject: Gmn code can be retreive from existing score objects (gmn or pianoroll) simply refering
to them using their identifier (using absolute or relative path).

• EvaluableExpression: an expression can also be used as an argument, thus simple operator can be
combined together to create more complex ones. In that case the expr token can be omitted: parenthesis
are sufficient.

Arguments prefix

• &: When triggering the reevaluation of an expression (see Section 18.4) only the arguments prefixed with
& are updated.

• ~: before the first evaluation of a score expression, any ScoreObjects prefixed with a ~ shall be replaced
by their own expression. In other words, score expressions containing ~ arguments will be expended with
existing score expressions. This mechanism allows to compose not only scores and score expressions
together.

EXAMPLE
Defining /ITL/scene/score as a copy of /ITL/scene/simpleScore duplicated 4 times.

78

INSCORE OSC MESSAGES REFERENCE

/ITL/scene/simpleScore set gmn "[e {c,g} |]";

/ITL/scene/score set gmn expr(&simpleScore);

/ITL/scene/score set gmn expr(seq ~score ~score);

/ITL/scene/score set gmn expr(par ~score ~score);

/ITL/scene/score should look like:

& Xxxxxxxx xxxxxxxxxxx_XX & Xxxxxxxx xxxxxxxxxxx_XX
& Xxxxxxxx xxxxxxxxxxx_XX

Xxxxxxxx xxxxxxxxxxx_XX
Xxxxxxxx xxxxxxxxxxx_XX

Querying for the expanded expression of /ITL/scene/score (see Section 18.4) should return:

/ITL/scene/score expr
expr(par

(seq
&simpleScore
&simpleScore

)
(seq

&simpleScore
&simpleScore

)
)

NOTE ON ARGUMENTS QUOTING
Arguments using special characters (space, tabulation, parenthesis, braces...), should be simple or double quoted,
otherwise quotes can be omitted.

18.4 ’expr’ commands

ITLObject defined using an evaluable expression gain access to these specific commands:

• get expr: return the expression used to define the object (before the expansion of ~ arguments).
• get exprTree: return the expanded expression
• expr reeval: re-evaluate the expression, updating only the value of arguments prefixed with &.
• expr reset: re-evaluate the expression, updating the value of all arguments.
• expr renew: reapply the definition of the object (similar to send its set message again)

Applied to an object which wasn’t defined by an evaluable expression, all this commands will cause a bad argu-
ment error.

The renew command reset the internal state of the evaluated variable, forcing the re-evaluation and update of
every arguments in the expression. Be aware that the track of copy evaluated arguments is lost after the first
evaluation, thus renewing an expression defined using copy evaluated arguments won’t update these arguments
to their targeted ITLObject expression. Though, static arguments added by the copy shall be renewed.

18.5 newData event

newData is triggered by any object when its value change (generally because of a set message). Neither trying
to set an object to its actual value without changing its type, nor re-evaluating an object to its actual value will

79

INSCORE OSC MESSAGES REFERENCE

trigger newData.
Of course, the newData event can be used together with reeval to automatically update an object when the value
of an other changes.

EXAMPLE
Creating a copy of score, and automatise its update when score is changed

/ITL/scene/score set gmn "[c e]";

/ITL/scene/copy set gmn expr(&score);

/ITL/scene/score watch newData (/ITL/scene/copy expr reeval);

To avoid infinite loop when using recursion, newData event is delayed of one event loop, meaning that, in the
previous example, during the event loop that follow score’s modification, score and copy are different (copy
has not been updated yet...).

NOTE
Because newData event is delayed, if score experiences multiple modifications during the same event loop
(because multiple set messages have been sent together), only his final value will be accessible when newData
will be actually triggered, however the event will be sent as many times as score have been modified.

NOTE WHEN AUTOMATIZING UPDATE
For the reasons raised in the previous note, one should be very careful to delayed update when automatise reeval
with newData. Indeed, in some extreme case, executing a script one line after an other won’t have the same result
as executing the all script at once!!

EXAMPLE
Creating a "score buffer", storing every state adopted by score

/ITL/scene/score set gmn "[c]";

/ITL/scene/buffer set gmn "[]";

/ITL/scene/buffer set gmn expr(seq &buffer (seq "[|]" &score));

/ITL/scene/score watch newData (/ITL/scene/buffer expr reeval);

/ITL/scene/score set gmn "[e]";

/ITL/scene/score set gmn "[g]";

/ITL/scene/score set gmn "[{c,e,g}]";

Won’t have the same result if run line by line, or the all script as once:
Line by line:

& xxxxxxxxxxx_XXX

& _Xxxxxxxx Xxxxxxxx Xxxxxxxx xxxxxxxxxxx_XXX

All script lines at once:

& xxxxxxxxxxx_XXX

& _Xxxxxxxx xxxxxxxxxxx_XXX xxxxxxxxxxx_XXX xxxxxxxxxxx_XXX

To avoid such undeterministic behaviour, one should, in this case, manually trigger reeval after each modifica-
tion of score.

80

Chapter 19

Plugins

A plugin is an external library that is dynamically loaded when an object that need it is created. The system looks
for plugins in the following locations:

• in the current folder first
• in the PlugIns folder, located in the application bundle on macos, in the application folder on other systems
• in the system default locations for shared libraries

Additionaly, a user path can be set, where the system will look for plugins in first position. See section 9.5.4 p.41.
The plugins are shared libraries which extension is platform dependent. The plugin name should not include the
extension. The expected extensions are the following: .dylib on MacOS and Linux, .dll on Windows.

19.1 FAUST plugins

FAUST [Functional Audio Stream] is a functional programming language specifically designed for real-time
signal processing and synthesis. A FAUST/INScore architecture allows to embed FAUST processors in IN-
Score, for the purpose of signals computation. A FAUST plugin is viewed as a parallel signal and thus it
is created in the signal address space. Similarly to signals, it is associated to an OSC address in the form
/ITL/scene/signal/name where name is a user defined name.

19.1.1 Set Message

There are two ways to create a FAUST Processor :

1 - By charging a DSP as a plugin already compiled

faustprocessor

set
�� �
faust

�� �
path
EXAMPLE

/ITL/scene/signal/myFaust set faust aFaustPlugin;

NOTE
The plugin name should not include the extension. The expected extensions are the following: .dylib on
MacOS and Linux, .dll on Windows.

2 - By charging libfaust as a plugin to compile a DSP on-the-fly (as a string or a file).

faustdsp

set
�� �
faustdsp

�� �
faustcode

81

http://faust.grame.fr

INSCORE OSC MESSAGES REFERENCE

faustdspfile

set
�� �
faustdspf

�� �
faustfile
EXAMPLE

/ITL/scene/signal/plus set faustdsp "process=+;";

/ITL/scene/signal/mydsp set faustdspf "mydsp.dsp";

19.1.2 Specific messages

A FAUST processor is characterized by the numbers of input and output channels and by a set of parameters.
Each parameter carries a name defined by the FAUST processor. The set of messages supported by a FAUST
processor is the set of signals messages extended with the parameters names and with specific query messages.

faustmessage

signalMsgs�
�1

msg
�� �
float32

�� �
�2
get
�� �
 in

�� �
�
�out

�� �

�

�

1 msg is any of the FAUST processor parameters, which are defined by the FAUST processor.
2 the get message is extended to query the FAUST processor: in and out give the number of input and

output channels.

EXAMPLE
Querying a FAUST processor input and output count:

/ITL/scene/signal/myFaust get in out;

gives as output:

/ITL/scene/signal/myFaust in 2;

/ITL/scene/signal/myFaust out 4;

Modifying the value of a FAUST processor parameter named volume:

/ITL/scene/signal/myFaust volume 0.8

19.1.3 Feeding and composing FAUST processors

A FAUST processor accepts float values as input, which are taken as interleaved data and distributed to the input
channels.
From composition viewpoint, a FAUST processor is a parallel signal which dimension is the number of output
channels. Thus, a FAUST processor can be used like any parallel signal. However, the signal identifier defined in
15.1.2 is extended to support adressing single components of parallel signal as follows:

signal

identifier �
� /

���
n

�

�
�float32

�� �

�

where n selects the signal #n of a parallel signal. Note that indexes start at 0.
EXAMPLE

Creating 3 parallel signals using the 3 output channels of a FAUST processor named myFaust:

82

INSCORE OSC MESSAGES REFERENCE

/ITL/scene/signal/y1 set ’myFaust/0’ 0.01 0. 1. 1. 1. ;

/ITL/scene/signal/y2 set ’myFaust/1’ 0.01 0.5 1. 1. 1. ;

/ITL/scene/signal/y3 set ’myFaust/2’ 0.01 -0.5 1. 1. 1. ;

19.2 Gesture Follower

INScore supports gesture following using the technology developed by the IRCAM IMTR team. These features
are available as a plugin that is included in the INScore distribution (version 1.03 or greater) or available from
the IRCAM.

19.2.1 Basic principle

Gesture following is provided as a mean to interact with a score. From input viewpoint, the gesture follower is
similar to signals (see section 15.1.1 p.57): it accepts data stream as input both in learning and following modes.
It implements a specific set of events related to gesture following and can generate message streams parametrized
with the gesture follower current state.
A gesture follower is setup to handle a given count of gestures, which are actually denoted by streams of float
vectors. We’ll refer to the size of the float vector as the gesture dimension. For example, the dimension of a
gesture captured from x, y and z accelerometers is 3.
A gesture follower operates in two distinct phases: a learning phase where it actually stores the gestures data,
and a following phase where it tries to match incoming data to the stored gestures data. When not learning nor
following, we’ll talk of an idle phase.
In the following phase, the system maintains a list of likelihood for the learned gestures, a list of positions in the
gestures and a list of speeds representing how fast the gestures are made. Of course, the higher the likelihood, the
more these data are meaningfull. It’s the user responsability to decide on the meaningfull likelihood threshold
value. Interaction events are triggered only in the following phase and for meaningfull likelihoods.

19.2.2 Messages

A gesture follower is created in a scene using the imtrgf type. It has a graphic appearance that may be used for
debug purpose but it is hidden by default.

gesturefollower

set
�� �
imtrgf

�� �
gesturedimension bufsize name�
�

�

The parameters are:

• gesturedimension: the size of the gestures data vector.
• bufsize: the size of the gesture data storage.
• name: a list of names to be used to refer to the learned gestures.

NOTE
A gesture follower is created with a fixed count of gestures that can be learned and decoded. These gestures are
named gestures and can be addressed at /ITL/scene/myfollower/gesturename where the part in italic
are user defined names and where myfollower is a gesture follower.

83

INSCORE OSC MESSAGES REFERENCE

gesturefollowerMsgs
1

float32
�� �
�

�
�

�
�2

learn
�� �
name

�3
follow
�� �
�4
stop
�� �
�5
clear
�� �
�6
likelihoodwindow
�� �
float32

�� �
�7
tolerance
�� �
float32

�� �

�

• [1] input data into the gesture follower. The data are interpreted according to the current operating mode
i.e. learning, following or idle.

• [2] starts to learn the gesture designated by name. Actually records the next input data to the gesture.
• [3] starts following i.e. trying to match the next input data to the recorded gestures.
• [4] stops learning or following. Actually puts the system in idle phase.
• [5] clear all the gestures data. This is equivalent to send the clear message to all the gestures.
• [6] sets the size of the window that contains the history of the likelihoods. May be viewed as how fast the

likelihoods will change.
• [7] sets the follower tolerance.

EXAMPLE
Creating a gesture follower for 3 dimensional data and a typical learning sequence:

/ITL/scene/gf set imtrgf 3 1000 gestureA gestureB gestureC gestureD ;

/ITL/scene/gf learn gestureA ;

/ITL/scene/gf 0.1 0.5 -0.2 ... 0.7; #the data size must be a multiple of 3

/ITL/scene/gf stop;

19.2.3 Gestures management

Messages can also be sent to gestures i.e. to addresses in the form /ITL/scene/myfollower/gesturename
where myfollower is a gesture follower.
A gesture could be in two states:

• an active state: when its likelihood is greater or equal to the likelihood threshold.
• an idle state: when its likelihood is lower than the likelihood threshold.

gesture

set
�� �
 float32

�� �
�
�

�

�
�clear

�� �
�learn
�� �
�likelihoodThreshold
�� �
float32

�� �

�

• set: sets the gesture data. This is equivalent to learn the corresponding data. The set message could be
used to restored previously saved gesture data.

84

INSCORE OSC MESSAGES REFERENCE

• clear: clears the gesture data.
• learn: puts the gestures follower in learning mode and starts learning the corresponding gesture. This is

equivalent to send OSClearn gesturename to the parent gesture follower.
• likelihoodThreshold: sets the gesture likelihood threshold. The parameter is a float value in the range
[0,1]. Default value is 0.5.

Gestures supports also specific queries :

gestureget

get
�� �
�

�likelihoodThreshold
�� �
�size
�� �

�

• get: without parameter, returns a set message when the gesture is not empty.
• size: gives the current size of the gesture, actually the number of recorded frames.

19.2.4 Events and interaction

Events are defined at gesture level and events management messages should be addressed to gestures.

gestureevents

watch
�� �
�

�gfEnter
�� �
�gfLeave
�� �
�gfActive
�� �
�gfIdle
�� �

�

�
�messages

�

• gfEnter triggered when the gesture state changes from idle to active.
• gfLeave triggered when the gesture state changes from active to idle.
• gfActive triggered in active state each time the gesture likelihood is refreshed.
• gfIdle triggered in idle state each time the gesture likelihood is refreshed.

A message associated to a gesture supports the following specific variables:

gesturevariable

gflikelihood
�� �
�

�gfpos
�� �
�gfspeed
�� �

�

�
�[low,high]

�� �

�

These variables support the scaling feature associated to position variables and described in section 17.5.1 p.73.

• gflikelihood indicates the current likelihood
• gfpos indicates the current position in the gesture
• gfspeed indicates the current gesture execution speed

NOTE
Variables described in section 17.5 p.73 may also be used but they are meaningless and contains default values.

85

INSCORE OSC MESSAGES REFERENCE

19.2.5 Gesture Follower Appearance

A gesture follower object has a graphic appearance and supports all the standard objects properties, including
mapping and synchronization. This graphic appearance is provided mainly for debug purpose and by default, the
object is hidden. Figure 19.1 shows the gesture follower appearance in its different phases:

• when idle, the upper part of the graphic indicates the buffer state of the different gestures. It also includes
the gestures likelihood threshold.

• when learning, a red frame and a grey background indicates that a learning a gesture is currently in progress.
The gesture buffer state is refreshed while learning.

• when following, the upper part indicates each gesture current likelihood and the lower part indicates the
current estimated positions.

likelihood threshold

buffer state

likelihoods

positions

}
}

Idle Learning Following

Figure 19.1: The gesture follower appearance in its different phases.

19.3 Httpd server plugin

INScore can embed Http server to expose real time screenshot image of a scene to the web. This feature is based
on libmicrohttpd and is available as a plugin that is included in the INScore distribution (version 1.11 or greater).
The Url to get the image is the base url of the server.

19.3.1 Set Message

The http server object is created in a scene like other objects and served image of his scene.

httpdserver

set
�� �
httpd

�� �
port

• port http port used by the server.

EXAMPLE

/ITL/scene/server set httpd 8000;

NOTE
If the http port is already used, the server cannot start.

19.3.2 Specific messages

The http server status can be delivered with a specific message.

httpdmessage

get
�� �
status

86

http://www.gnu.org/software/libmicrohttpd/

INSCORE OSC MESSAGES REFERENCE

A string corresponding to the server status ("started" or "stopped") is return.
EXAMPLE

/ITL/scene/server get status;

87

Chapter 20

Changes list

20.1 Version 1.28 vs version 1.27

• new dvolume method for media objects
• new ssl static application node for ssl certificates management
• new cert key cacert messages to manage ssl certificates and keys. See section 11.2 p.46
• new get clients messages at application level
• add https support to forwarding mechanism. See section 11 p.45

INScore Web version

• fix ready event for audio objects

20.2 Version 1.27 vs version 1.24

• INScore Web version
• new faust object (web version)
• new connect method (web version)
• forwarding mechanism extended with http and ws support. See section 11 p.45

20.3 Version 1.24 vs version 1.22

• new inscore2 scripting language
• log window supports the scale message. See section 9.5.3 p.40
• colors: supports html color names and hex values with 0x as prefix. See section 3.3.2 p.12
• supports absolute time segments in mappings. See section 13.1.1 p.50
• tempo is now a floating point value
• fix touch events with edit dialog
• add ’inscore2’ extension to files filter (mobile version)
• update to guido engine 1.66
• edit message supports set as argument. See section 3.6 p.15
• edit new reset argument to clear the edit string in the object cache. See section 3.6 p.15
• new dshear method. See section 3.2 p.10
• fix bug with javascript runtime variable (passed as argument to run)
• fix synchronization issue with arcs (not visible when synchronized)
• fix crash bug with set messages addressed to /ITL/*/anobject

88

INSCORE OSC MESSAGES REFERENCE

20.4 Version 1.22 vs version 1.21
• new opengl message supported at scene level for optional OpenGl graphics rendering. Improves signifi-

cantly the cpu use for graphics operations but at the cost of poorer rendering for text and symbolic scores
• fix potential issue with dates: dates expressed with big values for the numerator or the denominator may

result in overflow

20.5 Version 1.21 vs version 1.18
• new set of sensor objects. See section 16 p.63.
• update to guido engine 1.63
• new preprocess message supported at application and scene level intended to debug javascript sections

or math expressions. Output of pre-processing is printed to the log window. See section 9.1 p.37 and 10
p.42.

• environement variables introduced in scripting environment (OSName and OSId). See INScoreLang doc-
umentation.

• new math expressions introduced in scripting context. See INScoreLang documentation.
• new syncFrame synchronisation mode. See section 14.1.3 p.55 and 14.1.4 p.55.
• the events system has been extended to any object attribute and supports user defined events. This change

comes also with a one tick delay introduced to handle all the events (i.e. the event associated messages are
processed by the next time task): this is intended to avoid freezing the system in case of loops. See section
17.2 p.71 and 17.3 p.72.

• lua support has been dropped (compilation was optional, never embedded into a distribution)
• parser strategy changed: now each message is processed one by one to ensure the system consistency, es-

pecially for message based variables: an object state remains now consistent from one message to another.
• new arc object. See section 6.4 p.22 and 8.8 p.33.
• new radius message supported by rectangles. See section 8.7 p.33.
• new edit message supported by all objects: opens a small messages editor. See section 3.6 p.15.
• new level message supported by the log window and extended debugging support. See section 9.5.3 p.40.
• new video specific messages and management: the video time is now independent from the inscore object

time. See section 8.5 p.32.
• gmn objects set: output correct error message in case of syntax error
• save msg output changed: a scene emit the new message, static info nodes (log, stat, javascript...)
• bug in debug name corrected (was not removed from graphic space)
• bug in polygon and curve position corrected (was not centered on 0 0) - use /ITL compatibility to

preserve previous behaviour
• crash bug corrected: occured when lauching inscore from a secondary screen
• new write message supported by text based objects. See section 8.11.2 p.36.

20.6 Version 1.18 vs version 1.17
• new tempo message supported by all objects. See section 4.2 p.18.
• new pageCount event supported by symbolic score objects. See section 17.1.6 p.71.
• new error event supported at application level. See section 17.1.6 p.71.
• new browse message at application level to open a document in a web browser. See section 9.3 p.38.
• web api documentation included in package

20.7 Version 1.17 vs version 1.15
• support animated svg using the new animate message. See section 8.6 p.33.
• messages list variables are exported to javascript as a string.

89

INSCORE OSC MESSAGES REFERENCE

• Carlito Regular open source font is embedded in the application ressources and used as a default font. See
at https://fontlibrary.org/fr/font/carlito for more information.

• symbolic notation support extended with score expressions. See section 18 p.77.
• new newData event. See section 17.1.5 p.71.
• the javascript engine is shared between the application and the different scenes. Note that it may change a

script behavior when exploiting the previous independance of the javascript engine environments.
• new javascript osname function that gives the current operating system name. See INScoreLang documen-

tation.
• new javascript osid function that gives the current operating system as an id. See INScoreLang documen-

tation.
• rootPath message can be called without parameter to clear a scene rootPath. See section 10 p.42.
• log window supports the foreground message. See section 9.5.3 p.40.
• user actions on windows are generating foreground messages.
• application quit when the last scene is closed (even when the log window is opened)
• new lock message supported by all objects to prevent an object deletion. See section 3 p.7.
• OSC output buffer has been enlarged to 32768. Note that sending large messages works on localhost but

are likely to face the MTU on real network.
• crash bug corrected: outgoing OSC messages are now handling buffer overflow exceptions.
• support for multi touch events. See section 17.1.2 p.70.
• new radialgraph signal representation. See section 15.3 p.60.
• httpd object is visible as a qrcode giving the server url.
• httpd object is now part of the library (not a plugin any more) (not available on Windows, Android and

iOS)
• frameless and fullscreen modes management revised at view level and are now now exclusive at model

level
• String without spaces in INScore scripts no longer need to be quoted.

20.8 Version 1.15 vs version 1.12

• new frame query method: get frame gives the coordinates of 4 points that represent the object frame,
expressed in the scene local coordinates system and including all the graphic transformations (scaling,
rotations on the 3 axis, shear etc.)

• pen messages are now accepted by all the components. Thie extension is provided to display any object
bounding box. Note that for rects, ellipses etc. the previous behavior is preserved.

• pianoroll support. See section 6.2 p.21 and 8.4 p.30.
• Add web Api to expose inscore on the web with websocket or http.
• Add change tab on mobile with three digits gesture.
• add new object filter at application and scene level to filter forwarded messages.
• sending to broadcast address is enabled
• add forward and filter messages to the scene to handle messages forwarding at scene level. See section

?? p.??.
• default port to forward messages is now 7000.
• add new optional tab at startup with a menu for ios and android.
• add zoom and move capabilities at scene level using scale, OSCxorigin and OSCyorigin. This is intended

to support two fingers gesture on mobile device.
• bug with lines corrected: a line in non-square parent was rotated when the parent’s width was smaller than

its height.
• bug with eval forwarding corrected: forwarded messages were triggering a syntax error due to a misinter-

preted incorrect args count

90

https://fontlibrary.org/fr/font/carlito

INSCORE OSC MESSAGES REFERENCE

20.9 Version 1.12 vs version 1.08

• line objects: color message is now an alias of penColor.
• foreground method at scene level to put a scene window in foreground. See section 10 p.42.
• text items support font spec with new fontSize, fontFamily, fontStyle and fontWeight messages.

See section 8.11.1 p.35.
• new compatibility method at application level, provided to preserve previous behaviors. See section 9.1

p.37.
• default size of guido item is increased: the ratio to the previous size is 8.
• force default size and font to text items in order to get equivelent rendering on different platforms (default

to Arial 13px).
• new arrows attribute for line objects. See section 8.10 p.34.
• the export message supports multiple file paths. See section 3 p.7.
• new exportAll message to export an object with its children. See section 3 p.7.
• incoming messages buffer size increased to 10.000
• url support for inscore files (load message)
• new common queries (get message) : count and rcount that give the enclosed objects count and recursive

count. The messages are supported at scene and application level as well. See section 10.3 p.43.
• new memimg object that capture the image of any object hierarchy including scenes. See section 6.6 p.23.
• supports relative OSC addresses that are evaluated in the context of the target object (i.e. a scene for drag

and drop operations, arbitrary objects with the eval method).
• new eval method that takes a message list as argument, provided as a context for relative addresses evalu-

ation. See section 5 p.19.
• new httpd object that implements an http server providing images of the scene to remote clients. See

section 6.10 p.25 and section 19.3 p.86.
• new websocket object that implements a websocket server providing images of the scene to remote clients

but also changes notifications. See section 6.10 p.25.
• Files objects can receive URL as path. See section 6.8 p.24.
• new intermediate object for the URL (waiting for the data to be downloaded to create the real object)
• new events associated to url based objects: success, error, cancel. See section 17.1.4 p.70.
• support for int values as parameters of the set method of rect shape and polygon objects
• the clear message addressed to a gmnstream object clears also the view. The change was not previously

reflected until a new valid string was posted to the object.
• bug in export item corrected : child scaling was not applied.
• bug correction: for multiple exports, only the last one was done.
• bug in extended address support corrected: extended address was ignored for messages dropped to a scene

.
• bug in window color corrected: black color was not correctly set due to an incorrect color information

returned by Qt.
• bug with ’line’ initialization corrected: wrong position and orientation with negative coordinates (was

previously corrected but reintroduced), incorrect initialization in layers.

20.10 Version 1.08 vs version 1.07

• new __END__ marker supported to end a script parsing at arbitrary location (see INScoreLang documenta-
tion.).

• when displaying the mapping, the map dates are not printed any more by default (due to size and collisions).
The debug map parameter change from boolean to int value: 1 to activate the mapping display, 2 to have
also the dates displayed (see section 8.12 p.36).

• the signal node is available at any level of the hierarchy (as well as the sync node)
• new connect and disconnect messages for the signal node to support signal connection to objects graphic

91

INSCORE OSC MESSAGES REFERENCE

attributes (see section 15.2 p.59).
• a slave can have several masters
• no more side effects for synchronized objects (position change, scaling)

20.11 Version 1.07 vs version 1.06
• bug with ’line’ initialization corrected: wrong position and orientation with negative coordinates.
• new plugins static node at application level to provide a user path to look for pugins (see section 9.5.4

p.41).
• explicit objects for musicxml scores (musicxml and musicxmlf types) (see section 6.1 p.20).
• new faustdsp object, charging libfaust as a plugin to compile faust DSP on-the-fly (see section 6.5 p.23).
• exception catched when sending osc messages: was a potential crash, e.g. in case of get message sent to a

signal with a large buffer -> out of buffer memory
• new javascript ’post’ function for posting delayed messages (see INScoreLang documentation.)
• new write method supported by the ’log’ window (see section 9.5.3 p.40)
• variable addresses are evaluated in message based variables
• supports relative rotations on x and y axis

20.12 Version 1.06 vs version 1.05
• save message can now take an optional list of attributes to be saved (see section 3 p.7)
• variables are now evaluated and expanded inside strings. Thus interaction variables can now be passed as

argument of javascript functions.
• corrects musicxml-version output
• log window is put to front when the show menu is recalled
• object aliases are removed when the object is deleted

20.13 Version 1.05 vs version 1.03
• incorrect error message for watch messages corrected
• new javascript readfile function (see INScoreLang documentation.)
• log window is now available from the application ’Tools’ menu
• new brushStyle attribute (see section 8.1 p.28)
• new layer object (see section 6.7 p.24)
• new save method specific to the log window: saves the window content to a file (see section 9.5.3 p.40)
• new event method supported at object level for UI events simulation
• new del watchable event: sent when deleting an object (see section 17.1.5 p.71)
• new gmnstream guido stream object (see section 6.1 p.20)

20.14 Version 1.03 vs version 1.0
• log window utility provided as a new static node at application level (/ITL/log) (see section 9.5.3 p.40).
• new systemCount read only attribute for Guido scores (see section 8.3 p.30)
• IRCAM gesture follower support (see section 19.2 p.83)
• javascript engine is available at the static address /ITL/scene/javascript and can be activated using a ’run’

method (see INScoreLang documentation.)
• new export event (see section 17.1.5 p.71)
• new endPaint event at scene level (see section 17.1.5 p.71)
• new windowOpacity method at scene level (see section 10 p.42)

92

INSCORE OSC MESSAGES REFERENCE

• bug correction: error messages not generated for dropped files (actually for the scene load method)
• bug correction: possible infinite loop in QStretchTilerItem::paint method
• bug correction: incorrect get alias output (all the aliases were dumped out in a single message)

20.15 Version 1.00 vs version 0.98
• bug correction in streching very small objects (due to approximations)
• bug correction in $sx and $sy computation (xorigin and yorigin was not taken into account)
• new ’ticks’ message at application level for querying or setting the current count of time tasks (see section

9.1 p.37)
• new ’time’ message at application level for querying or setting the current time (see section 9.1 p.37)
• new ’forward’ message at application level for messages forwarding to remote hosts (see section 9.1 p.37)
• new ’relative | absolute’ synchronization mode (see section 14.1 p.54)
• ’rename’ message not supported any more
• a scene accepts multiple dropped files
• significant extension and syntax changes in inscore script files (see INScoreLang documentation.)
• fileWatcher methods renamed and simplified (see section 17.7 p.76)
• ’click’ and ’select’ messages are not supported any more.
• new ’stats’ virtual node at application level (address /ITL/stats), supports ’get’ and ’reset’ messages the

node gives statistics about the incoming messages (see section 9.5.2 p.40)
• crash bug in signal creation corrected: a signal size created with an incorrect stream (e.g. a string value)

was 0 and no buffer was allocated.
• extension of the time related events to duration: new ’durEnter’ and ’durLeave’ watchable events (see

section 17.1.3 p.70)
• new ’absolutexy’ message at scene level to switch to absolute coordinates (in pixels) (see section 10 p.42)
• new ’push’ and ’pop’ messages to store and restore current watched events and associated messages (see

section 17.6 p.76)
• internal change: mappings are now implemented as a separable library strictly complying to the mappings

formalism.
• new %f format for the date variable to request a float value (instead a rational value) (see section 17.5.3

p.74).
• dates may be specified as rational strings (see section 4 p.17).
• interaction messages are not any more generated when the date can’t be resolved.
• new rate message at application level to control the time task rate (see section 9 p.37)
• new frameless message at scene level to switch to frameless or normal window (see section 10 p.42)

20.16 Version 0.98 vs version 0.97
• new fastgraph object for graphic signals fast rendering (see section 6 p.20)
• $date variable overflow catched
• files dropped on application icon correctly opened when the application is not running
• supports drag and drop of textual osc message strings
• osc error stream normalized: the message address is ’error:’ or ’warning:’ followed by a single message

string.
• javascript and lua support: a single persistent context is created at application level and for each scene. (see

section ?? p.??)

20.17 Version 0.97 vs version 0.96
• objects position, date and watched events preserved through type change

93

INSCORE OSC MESSAGES REFERENCE

• bug in quantified dates corrected (null denominator set to the quantified value)
• new ’alias’ message providing arbitrary OSC addresses support
• bug in parser corrected: \ escape only ’ and " chars, otherwise it is literal
• guido score map makes use of the new guidolib extended mapping API for staff and system
• chords map correction (corrected by guido engine)

20.18 Version 0.96 vs version 0.95
• switch to v8 javascript engine
• lua not embedded by default

20.19 Version 0.95 vs version 0.92
• new ’mouse’ ’show/hide’ message supported at application level (see section 9 p.37)
• graphic signal supports alpha messages at object level
• javascript and lua embedded and supported in inscore scripts.
• bug correction in sync delete (introduced with version 0.90)

20.20 Version 0.92 vs version 0.91
• bug corrected: crash with messages addressed to a signal without argument
• date and duration messages support one arg form using 1 as implicit denominator value the one arg form

accepts float values (see section 4 p.17).

20.21 Version 0.91 vs version 0.90
• bug in sync management corrected (introduced with the new sync parsing scheme)

20.22 Version 0.90 vs version 0.82
• at application level: osc debug is now ’on’ by default
• new scripting features (variables).
• ITL file format change:

- semicolon added at the end of each message
- ’//’ comment not supported any more
- ’%’ comment char replaced by ’!’
- new variables scripting features
- single quote support for strings
- messages addressed to sync node must use the string format

• new ’grid’ object for automatic segmentation and mapping

20.23 Version 0.82 vs version 0.81
• new Faust plugins for signals processing
• colors management change: all the color models (RGBA and HSBA) accept now float values that are

interpreted in the common [-1,1] range. For the hue value, 0 always corresponds to ’red’ whatever the scale
used.

• stretch adjustment for video objects (corrects gaps in sync h mode)
• support for opening inscore files on the command line
• system mapping correction

94

INSCORE OSC MESSAGES REFERENCE

• splash screen and about menu implemented by the viewer

20.24 Version 0.81 vs version 0.80
• behavior change with synchronization without stretch: now the system looks also in the slave map for a

segment corresponding to the master date.
• $date variable change: the value is now (0,0) when no date is available and $date is time shifted according

to the object date.
• date message change: the date 0 0 is ignored

20.25 Version 0.80 vs version 0.79
• corrects the map not saved by the save message issue
• corrects get map output: 2D segments were not correctly converted to string

20.26 Version 0.79 vs version 0.78
• crash bug corrected for the ’save’ message addressed to ’/ITL’
• message policy change: relaxed numeric parameters policy (float are accepted for int and int for float)
• bug in get watch for time events corrected (incorrect reply)

Known issues:

• map not saved by the save message

20.27 Version 0.78 vs version 0.77
• guido system map extended: supports flat map or subdivided map (see section 13.4 p.52).
• new shear and rotate transformations messages (see section 3.2 p.10).
• new rename message to change an object name (and thus its OSC address) (see section 3 p.7).
• relaxed bool parameter policy: objects accept float values for bool parameters
• automatic numbering of exports when destination file is not completely specified i.e. no name, no exten-

sion. (see section 3 p.7).
• quantification introduced to $date variable (see section 17.5 p.73).
• reset message addressed to a scene clears the scene rootPath

20.28 Version 0.77 vs version 0.76
• get guido-version and musicxml-version messages supported by the application (see section 9 p.37).
• save message bug correction - introduced with version 0.70: only partial state of objects was saved
• rootPath message introduced at scene level (see section 10 p.42).
• scene name translation strategy change: only the explicit ’scene’ name is translated by the scene load

message handler into the current scene name, other names are left unchanged.
• bitmap copy adjustment in sync stretched mode is now only made for images

20.29 Version 0.76 vs version 0.75
• new require message supported by the /ITL node (see section 9 p.37).
• new event named newElement supported at scene level (see section 17.1.3 p.70).
• new name and address variables (see section 17.5 p.73).

95

INSCORE OSC MESSAGES REFERENCE

• new system map computation making use of the new slices map provided by the guidolib version 1.42
• INScore API: the newMessage method sets now the message src IP to localhost With the previous version

and the lack of src IP, replies to queries or error messages could be sent to undefined addresses (and mostly
lost).

• bug corrected with ellipse and rect : integer graphic size computation changed to float (prevents objects
disappearance with small width or height)

• bug in scene export: left and right borders could be cut, depending on the scene size corrected by rendering
the QGraphicsView container instead the QGraphicsScene

• crash bug with $date:name corrected: crashed when there is no mapping named name.

20.30 Version 0.75 vs version 0.74

• new map+ message (see section 13.2 p.51).
• the click and select messages are deprecated (but still supported). They will be removed in a future

version.

20.31 Version 0.74 vs version 0.63

• new dpage message accepted by gmn objects (see section 8.3 p.30).
• x and y variables: automatic range type detection (int | float)
• set txt message: accepts polymorphic stream like parameters (see section 6 p.20).
• drag and drop files support in INScore viewer
• interaction variables extension: $sx, $sy variables added to support scene coordinate space (see section

17.5 p.73).
• automatic range mapping for $x, $y variables.
• new $self and $scene variables in the address field (see section 17.5.7 p.75).
• OSC identifiers characters set extended with ’_’ and ’-’ (see section 2 p.3).
• support for multiple scenes: new, del and foreground messages (see section 10 p.42).
• load message supported at scene level (see section 10 p.42).
• get watch implemented.
• watch message without argument to clear all the watched events (see section 17.5 p.73).
• order of rendering and width, height update corrected (may lead to incorrect rendering)
• bug with gmn score corrected: missing update for page, columns and rows changes.
• package delivered with the Guido Engine version 1.41 that corrects minimum staves distance and incorrect

mapping when optimum page fill is off.

20.32 Version 0.63 vs version 0.60

• new ’mousemove’ event (see section 17.1.1 p.69).
• interaction messages accept variables ($x, $y, $date...) (see section 17.5 p.73).
• SVG code and files support (see section 6.9 p.25).
• set line message change: the x y form is deprecated, it is replaced by the following forms:
’xy’ x y (equivalent to the former form) and ’wa’ width angle (see section 6 p.20).

• new ’effect’ message (section 3.5 p.14).
• utf8 support on windows corrected
• transparency support for stretched synchronized objects corrected
• multiple application instances supported with dynamic udp port number allocation.
• command line option with –port portnumber option to set the receive udp port number at startup.

96

INSCORE OSC MESSAGES REFERENCE

20.33 Version 0.60 vs version 0.55
• new ’xorigin’ and ’yorigin’ messages (section 3.1.3 p.10).
• new interaction messages set (section 17 p.68).
• alpha channel handled by images and video
• bug correction in line creation corrected (false incorrect parameter returned)
• bug correction in line ’get’ message handling
• memory leak correction (messages not deleted)

Known issues:

• incorrect graphic rendering when ’sync a b’ is changed to ’sync b a’ in the same update loop
• incorrect nested synchronization when master is horizontaly stretched,

20.34 Version 0.55 vs version 0.53
• ITL parser corrected to support regexp in message string (used by messages addressed to sync node)
• format of mapping files and strings changed (section 13.1 p.49).
• format of sync messages extended to include map name (section 14 p.53).
• signal node: ’garbage’ message removed
• new ’reset’ message for the scene (/ITL/scene) (section 10 p.42).
• new ’version’ message for the application (/ITL) (section 9 p.37).
• new ’reset’ message for signals (section 15.1.1 p.57).
• bug parsing messages without params corrected
• slave segmentation used for synchronization
• new H synchronization mode (preserves slave segmentation)
• crash bug corrected for load message and missing ITL files

20.35 Version 0.53 vs version 0.50
• Graphic signal thickness is now symmetrically drawn around y position.
• ITL file format supports regular expressions in OSC addresses.
• IP of a message sender is now used for the reply or for error reporting.
• new line object (section 6 p.20).
• new penStyle message for vectorial graphics (section 8 p.28).
• new color messages red, green, blue, alpha, dcolor, dred, dgreen, dblue (section 3 p.7 and

3.1.2 p.9).
• color values for objects are bounded to [0,255]
• get map message behaves according to new map message (section 7 p.27).
• get width and get height is now supported by all objects (section 7 p.27).
• bug in signal projection corrected (index 0 rejected)
• bug in signals default value delivery corrected
• new pageCount message for guido scores
• debug nodes modified state propagated to parent node (corrects the debug informations graphic update

issue)
• rational values catch null denominator (to prevents divide by zero exceptions).

20.36 Version 0.50 vs version 0.42
• identifier specification change (section 2 p.3).

97

INSCORE OSC MESSAGES REFERENCE

• new application hello and defaultShow messages (section 9 p.37).
• new load and save messages (sections 9 p.37 and 3 p.7).
• click and select messages:

– rightbottom and leftbottom modes renamed to bottomright and bottomleft

– new center mode for the click message
– query mode sent back with the reply both for click and select messages

• new file, html and htmlf types for the set message (section 6 p.20).
• get syntax change for the scene.
• fileWatcher messages completely redesigned.
• mappings can be identified by names (section 13.1 p.49).
• rect, ellipse, curve, line and polygon object support graphic to relative-time mapping
• new synchronization modes for Guido scores: voice1, voice2, ... , staff1, staff2, ... , system, page.
• Guido mapping manages repeat bars.
• Graphic signals messages design (section 15.3 p.60).

98

Index

Argument, 78
ColorMsg, 11
EvaluableExpression, 77
ForwardDest, 45
ITLClientsQuery, 47
ITLFilteringForward, 46
ITLLog, 40
ITLMsg, 37
ITLMsgForward, 45
ITLPlugin, 41
ITLPortsMsg, 38
ITLRequest, 39
ITLStats, 39
ITLSystem, 38
ITLdebug, 40
OSCAddress, 3
OSCMessage, 3
PositionMsg, 8
SigOSCMessage, 3
SslSetup, 46
absColorMsg, 11
absPosMsg, 9
absoluteTime, 51
absoluteTimeInterval, 50
absoluteTimeSegment, 50
accelerometerMsg, 66
addressPrefix, 69
alias, 4
arcMsg, 33
arrowStyle, 34
arrowsheadMsg, 34
blurHint, 14
blurParams, 14
brushMsg, 28
color, 12
colorizeParams, 15
colorvalue, 11
commonMsg, 7
connection, 59
debugMsg, 36
editMsg, 15
effectMsg, 14
eventMsg, 72
faustdsp, 81
faustdspfile, 81
faustmessage, 82
faustprocessor, 81
fileWatcher, 76
float2DSegment, 50
floatInterval, 51

fontMsg, 35
fontStyle, 35
fontWeight, 35
gesture, 84
gestureevents, 85
gesturefollower, 83
gesturefollowerMsgs, 83
gestureget, 85
gesturevariable, 85
getMsg, 27
gmnstreamMsg, 30
graphicSignal, 60
graphtype, 61
gridMsg, 34
hsb, 12
httpdmessage, 86
httpdserver, 86
identifier, 3
int1DSegment, 50
int2DSegment, 50
intInterval, 51
interactMsg, 68
magnetometerMsg, 67
mapAddMsg, 51
mapMsg, 49
mapfMsg, 52
media, 32
mediaGet, 32
message, 68
miscEvent, 71
miscMsgs, 19
mouseEvent, 69
msgVar, 75
openglMsg, 43
orientationMsg, 67
originMsg, 10
parallelSignal, 57
penMsg, 13
penstyle, 14
pianorollMsg, 30
pianorollstreamMsg, 31
posVar, 73
projectionString, 58
radiusMsg, 33
rational, 51
relColorMsg, 13
relPosMsg, 9
relation, 49
relativeTimeInterval, 50
relativeTimeSegment, 50

99

INSCORE OSC MESSAGES REFERENCE

rotationMsg, 67
sceneMsg, 42
sceneQuery, 43
scoreMap, 52
scoreMsg, 30
sensorCommon, 65
sensorSet, 64
setFile, 25
setGraphicSignal, 23
setMedia, 23
setMisc, 24
setMsg, 20
setPianoRoll, 21
setScore, 20
setText, 21
setVGraphics, 22
shadowParams, 15
signal, 58, 82
signalcnx, 59
simpleSignal, 57
specificEvent, 71
stackMsg, 76
stateMsg, 76
svgMsg, 33
sync, 53
syncHow, 54
syncIdentifier, 53
syncPos, 55
syncStretch, 55
syncmode, 54
target, 60
tempoMsg, 18
tiltMsg, 67
time, 17
timeEvent, 70
timeMsg, 17
timeSegment, 50
timeVar, 74
touchEvent, 70
transformMsg, 10
txtStream, 22
txtwrite, 36
uievt, 69
urlEvent, 70
urlType, 25
variable, 75
webobject, 26
widthMsg, 29
xy, 73
xyz, 74

Common messages
alias, 4
angle, 9
color, 11, 12

alpha, 11
blue, 11
brightness, 11
green, 11

hue, 11
name, 11
red, 11
saturation, 11

debug
map, 36
name, 36

del, 7
dx, 9
dy, 9
dz, 9
edit, 15
event, 72
export, 7
exportAll, 7
get, 27
hsb, 12
lock, 7
map, 49
map+, 51
mapf, 52
save, 7
scale, 9
set, 20, 21
show, 7
x, 9
y, 9
z, 9

Effect messages
effect

blur, 14
colorize, 14
none, 14
shadow, 14

Faust Processor
in, 82
max, 82
min, 82
out, 82
set (dsp file), 81
set (dsp), 81
set (plugin), 81

File Watcher
watch, 76
watch+, 76

Forwarding
accept, 46
cacert, 46
cert, 46
forward, 45
get, 47
key, 46
reject, 46

Gesture follower, 83
clear, 84
follow, 83
get, 85

100

INSCORE OSC MESSAGES REFERENCE

size, 85
gfActive, 85
gfEnter, 85
gfIdle, 85
gfLeave, 85
gflikelihood, 85
gfpos, 85
gfspeed, 85
learn, 83, 84
likelihoodThreshold, 84
likelihoodwindow, 83
set, 84
stop, 83
tolerance, 83
watch, 85

Graphic signal
dimension, 60
fastgraph, 61
graph, 61
radialgraph, 61
set, 60

Httpd Server
set, 86
status, 86

Interaction
Events

cancel, 70
doubleClick, 69
durEnter, 70
durLeave, 70
end, 71
endPaint, 71
error, 70, 71
event, 69
export, 71
mouseDown, 69
mouseEnter, 69
mouseLeave, 69
mouseMove, 69
mouseUp, 69
newData, 71
newElement, 71
pageCount, 71
ready, 71
success, 70
timeEnter, 70
timeLeave, 70
touchBegin, 70
touchEnd, 70
touchUpdate, 70

pop, 76
push, 76
variable

absx, 73
absy, 73
address, 75
date, 74

name, 75
rdate, 74
scene, 75
sx, 73
sy, 73
x, 73
y, 73

watch, 68
watch+, 68

ITL debug
osc, 40

ITL log
clear, 40
level, 40
save, 40
scale, 40
show, 40
wrap, 40

ITL messages
browse, 38
compatibility, 37
defaultShow, 37
errport, 38
guido-version, 39
hello, 37
load, 37
mouse, 37
musicxml-version, 39
outport, 38
port, 38
preprocess, 37
rate, 37
read, 37
require, 37
rootPath, 37
ticks, 37
time, 37
version, 39

ITL plugin
path, 41
reset, 41

ITL stat
get, 39
reset, 39

Misc messages
eval, 19
map, 19
pop, 19
push, 19
watch, 19

Position messages
absolute

angle, 9
scale, 9
x, 9
y, 9
z, 9

101

INSCORE OSC MESSAGES REFERENCE

color
dalpha, 13
dblue, 13
dbrightness, 13
dcolor, 13
dgreen, 13
dhsb, 13
dhue, 13
dred, 13
dsaturation, 13

relative
dangle, 9
drotatex, 9
drotatey, 9
drotatez, 9
dscale, 9
dx, 9
dxorigin, 10
dy, 9
dyorigin, 10
dz, 9
xorigin, 10
yorigin, 10

Scene messages, 42
absolutexy, 42
del, 42
foreground, 42
frameless, 42
fullscreen, 42
load, 42
new, 42
opengl, 43
preprocess, 42
reset, 42
rootPath, 42

Scene query, 43
count, 43
rcount, 43

Sensors
accelerometer, 64

mode, 66
ambientlight, 64
autoscale, 65
compass, 64
gyroscope, 64
light, 64
magnetometer, 64

mode, 67
orientation, 64

mode, 67
proximity, 64
reset, 65
rotation, 64

hasZ, 67
run, 65
scale, 65
smooth, 65
tilt, 64

calibrate, 67
Set type

arc, 22
audio, 23
curve, 22
ellipse, 22
fastgraph, 23
faust, 23
faustdsp, 23
file, 25
gmn, 20
gmnf, 20
gmnstream, 20
graph, 23
grid, 24
html, 21
htmlf, 21
httpd, 26
img, 23
layer, 24
line, 22
memimg, 23
musicxml, 20
musicxmlf, 20
pianoroll, 21
pianorollf, 21
pianorollstream, 21
polygon, 22
rect, 22
svg, 22
svgf, 22
txt, 21
txtf, 21
url, 25
video, 23
websocket, 26

Signal, 57
connect, 59
connection, 59
disconnect, 59
parallel signal, 57

get, 57
projection string, 58

simple signal
default, 57
del, 57
get, 57
reset, 57
size, 57

Specific messages
arc

close, 33
drange, 33
dstart, 33
range, 33
start, 33

audio
play, 32
rate, 32

102

INSCORE OSC MESSAGES REFERENCE

vdate, 32
vduration, 32
volume, 32

brushStyle, 28
bdiag, 28
cross, 28
dense, 28
dense2, 28
dense3, 28
dense4, 28
dense5, 28
dense6, 28
dense7, 28
diagCross, 28
fdiag, 28
hor, 28
linearCross, 28
none, 28
solid, 28
ver, 28

fontFamily, 35
fontSize, 35
fontStyle, 35

italic, 35
normal, 35
oblique, 35

fontWeight, 35
black, 35
bold, 35
demibold, 35
light, 35
normal, 35

height, 29
line

arrows, 34
penAlpha, 13
penColor, 13
pendAlpha, 13
penStyle, 13

dash, 14
dashDot, 14
dashDotDot, 14
dot, 14
solid, 14

penWidth, 13
pianoroll

autoVoicesColoration, 30
clear, 31
clipPitch, 30
clipTime, 30
keyboard, 30
measureBars, 30
pitchLines, 30
voiceColor, 30
write, 31

rect
radius, 33

score
clear, 30

columns, 30
dpage, 30
page, 30
pageCount, 30
pageFormat, 30
rows, 30
systemCount, 30
write, 30

svg
animate, 33
animated, 33

video
play, 32
rate, 32
vdate, 32
vduration, 32
volume, 32

width, 29
write, 36

Synchronization, 53
syncIdentifier, 53
get, 53
Guido map, 52

page, 52
staff, 52
system, 52
systemflat, 52
voice, 52

syncHow, 54
absolute, 54
relative, 54

syncmode, 54
syncPos, 55

syncBottom, 55
syncFrame, 55
syncOver, 55
syncTop, 55

syncStretch, 55
h, 55
hv, 55
v, 55

Time messages
absolute

date, 17
duration, 17

relative
clock, 17
ddate, 17
dduration, 17
durClock, 17

tempo, 18
Transform messages

dshear, 10
rotate, 10
shear, 10

103

	Introduction
	General format
	Parameters
	Address space
	Aliases
	Scaling
	Using more than one implicit message

	Common messages
	Positioning
	Absolute positioning
	Relative positioning
	Components origin

	Components transformations
	Color messages
	Absolute color messages
	The color messages
	The hsb messages
	Relative color messages

	Pen control
	The 'effect' messages
	The blur effect
	The colorize effect
	The shadow effect

	The 'edit' message

	Time management messages
	Date and duration
	Tempo

	Miscellaneous messages
	The 'set' message
	Symbolic music notation
	Piano roll music notation
	Textual components
	Vectorial graphics
	Signals and graphic signals
	Media files
	Miscellaneous
	File based resources
	The file type
	Web objects

	The 'get' messages
	Type specific messages
	Brush control
	Width and height control
	Symbolic score
	Piano roll
	Audio and Video
	SVG Objects
	Rectangles
	Arcs
	The 'grid' object
	Arrows
	Textual objects
	Font control
	Writing

	The 'debug' nodes

	Application messages
	Application management
	Ports management
	System support
	Application level queries
	Application static nodes
	The 'stats' nodes
	The 'debug' nodes
	The 'log' nodes
	The 'plugins' nodes
	The 'ssl' node

	Scene messages
	Scene control
	OpenGl rendering
	Scene queries

	Messages forwarding
	Remote hosts list
	SSL support
	Filters
	Specific queries

	Layers
	Layers generalization

	Mapping graphic space to time space
	The 'map' message
	Segments definitions

	The 'map+' message
	Mapping files
	Symbolic score mappings

	Synchronization
	Synchronization modes
	Using the master date
	Synchronizing an object duration
	Controlling the slave position
	The syncFrame mode

	Signals and graphic signals
	The 'signal' static node.
	Signal messages.
	Composing signals in parallel.
	Distributing data to signals in parallel

	Connecting signals to graphic attributes.
	Graphic signals.
	Graphic signal default values.
	Parallel graphic signals.

	Sensors
	Sensors as signals
	Sensors as nodes
	Values
	Calibration
	Sensor common messages
	Sensor specific messages
	Accelerometer sensor
	Magnetometer sensor
	Rotation sensor
	Orientation sensor
	Tilt sensor

	Events and Interaction
	Internal events
	Mouse events
	Touch events
	Time events
	URL events
	Miscellaneous events
	Type specific events

	Attribute based events
	User defined events
	The 'event' message
	Variables
	Position variables
	Sensor variables
	Time variables
	Miscellaneous variables
	Message based variables
	Variables for user defined events
	OSC address variables

	Interaction state management
	File watcher

	Score expressions
	General Syntax
	Score Operators
	Score Arguments
	'expr' commands
	newData event

	Plugins
	FAUST plugins
	Set Message
	Specific messages
	Feeding and composing FAUST processors

	Gesture Follower
	Basic principle
	Messages
	Gestures management
	Events and interaction
	Gesture Follower Appearance

	Httpd server plugin
	Set Message
	Specific messages

	 Changes list
	Version 1.28 vs version 1.27
	Version 1.27 vs version 1.24
	Version 1.24 vs version 1.22
	Version 1.22 vs version 1.21
	Version 1.21 vs version 1.18
	Version 1.18 vs version 1.17
	Version 1.17 vs version 1.15
	Version 1.15 vs version 1.12
	Version 1.12 vs version 1.08
	Version 1.08 vs version 1.07
	Version 1.07 vs version 1.06
	Version 1.06 vs version 1.05
	Version 1.05 vs version 1.03
	Version 1.03 vs version 1.0
	Version 1.00 vs version 0.98
	Version 0.98 vs version 0.97
	Version 0.97 vs version 0.96
	Version 0.96 vs version 0.95
	Version 0.95 vs version 0.92
	Version 0.92 vs version 0.91
	Version 0.91 vs version 0.90
	Version 0.90 vs version 0.82
	Version 0.82 vs version 0.81
	Version 0.81 vs version 0.80
	Version 0.80 vs version 0.79
	Version 0.79 vs version 0.78
	Version 0.78 vs version 0.77
	Version 0.77 vs version 0.76
	Version 0.76 vs version 0.75
	Version 0.75 vs version 0.74
	Version 0.74 vs version 0.63
	Version 0.63 vs version 0.60
	Version 0.60 vs version 0.55
	Version 0.55 vs version 0.53
	Version 0.53 vs version 0.50
	Version 0.50 vs version 0.42

