
INScore Web
Version 1.28

D. Fober

Centre national de création musicale

Contents

1 Introduction 1

2 Behavioural differences 1
2.1 Optional components . 1
2.2 Using files in a script . 1

3 Unsupported 2
3.1 Unsupported objects . 2
3.2 Unsupported messages . 2

3.2.1 Common messages . 2
3.2.2 Application messages . 2
3.2.3 Application log window . 2
3.2.4 Scene messages . 3
3.2.5 Type specific messages . 3
3.2.6 Synchronization . 3
3.2.7 Events . 3

4 Specific new messages 3
4.1 Leveraging CSS . 3

5 Audio objects 4
5.1 Audio objects . 4
5.2 Faust objects . 4

5.2.1 Creating a Faust object . 5
5.2.2 Faust messages . 5
5.2.3 Faust objects parameters . 5
5.2.4 Polyphonic objects . 6

5.3 Audio Input / Output . 6

6 Communication scheme 6
6.1 Web messages format . 7

1 Introduction

Since version 1.27, the INScore engine is available as Javascript libraries:

• a WebAssembly [WASM] library providing all the services of the abstract INScore model,
• a Javascript library providing an HTML view of the INScore model.

The web environment provides a very different runtime context than a native application: it is much more mod-
ular; due to the absence of a ’concrete machine’ a number of INScore primitives do not make sense in a web
environment; finally it provides new rendering capabilities with CSS.
This document is intended to present the differences between the native and web versions of INScore. A special
section is also devoted to the implementation of INScore Web in standalone HTML pages.

2 Behavioural differences

The OSC protocol is not supported in the Web version. As a result, the mode of communication with the INScore
engine is different (see section 6) and may also depend on the application that uses this engine.
By default:

• the OSC output and error ports are redirected to the Javascript console.
• drag & drop works like in the native version: you can drop files or text to an INScore scene (an HTML div

in the Web version).

The log window (address /ITL/log) is dependent on the host application. By default, input messages addressed
to the log node are directed to the Javascript console.

2.1 Optional components

As the architecture of the web version is completely modular, the available objects depend on the host application:
e.g. a page which wants to use objects in symbolic notation (type gmn) will have to include the Guido library.
This architecture allows applications to be optimized to fit their needs. It also facilitates the extension of the
INScore engine. The table 1 presents the current supported components.

Component Name Dependent types
Guido Engine libGUIDOEngine.js gmn, gmnf, gmnstream,

pianoroll, pianorollf, pianorollstream
MusicXML library libmusicxml.js musicxml, musicxmlf

use of MusicXML implies to have also the Guido Engine
Faust compiler libfaust-wasm.js faust, faustf

FaustLibrary.js

Table 1: Components required by specific objects

2.2 Using files in a script

You can use file based objects in an INScore script but the file path is interpreted differently:

• when using an absolute path, it refers to the document root of the HTTP server,
• when using a relative path, it refers to the location of the HTML page

NOTE
Browsers infer a MIME type from the file extension and generally, download any file which extension is not
recognized (this behavior depends on the browser you are using). It is therefore recommended to use a .txt
extension for any textual resource with non-standard extension. For example, a score.gmn file could be renamed
and used as score.gmn.txt.

1

3 Unsupported

3.1 Unsupported objects

The table 2 presents the objects that are not supported:

Type Comment
fileWatcher unsupported

httpd unsupported server
websocket unsupported server

Faust plugins deprecated and redesigned (see section 5.2)
Gesture follower unsupported

Table 2: Unsupported objects

The following components are not yet implemented:

• graphic signals objects: graph, fastgraph, radialgraph
• Pianoroll stream: pianorollstream
• Misc.: grid
• Memory image: memimg
• Sensors: acceleromter, gyroscope, compass, etc.

3.2 Unsupported messages

A number of messages are not supported in the web version, either because they do not make sense in the runtime
context or because they cannot be implemented.

3.2.1 Common messages

• export, exportAll, save: not implemented
• shear, dshear: not implemented
• effect: colorize: not implemented
• edit: not implemented

3.2.2 Application messages

• quit: do not make sense in the web environment
• rootPath: not implemented
• mouse: not yet implemented
• read: not implemented
• load: not implemented
• port, outport, errport: do not make sense without OSC
• get: guido-version musicxml-version: not implemented.

Note that the corresponding components are loaded, they print their version number to the Javascript con-
sole.

3.2.3 Application log window

As mentioned above, the log window (address /ITL/log) is dependent on the host application. By default, input
messages addressed to the log node are directed to the Javascript console.

• clear: dependent on the host application (do nothing by default)
• save: not supported due to the lack of file system

2

• foreground: dependent on the host application (do nothing by default)
• wrap: dependent on the host application (do nothing by default)
• scale: dependent on the host application (do nothing by default)
• write: dependent on the host application (write to the Javascript console by default)

3.2.4 Scene messages

• save: not supported due to the lack of file system
• foreground: dependent on the host application (do nothing by default)
• rootPath: not yet implemented
• load: not yet supported
• frameless windowOpacity: not supported

3.2.5 Type specific messages

• brushstyle: not yet implemented
• Piano roll messages: not yet implemented
• Video get messages: not yet implemented
• SVG animate: not yet implemented
• Arc close: not yet implemented
• Line arrows: not yet implemented
• debug node: not yet implemented

Symbolic score:

• columns rows: not supported
• pageFormat: not yet implemented
• get: pageCount systemCount: not yet implemented

3.2.6 Synchronization

The following synchronisation modes are not yet supported:

• Stretch modes: h, hv

3.2.7 Events

The following events are not yet supported:

• Touch events: touchBegin, touchEnd, touchUpdate
• Url events: success, error, cancel
• Score event: pageCount
• export: not supported since the export message is not supported
• endPaint: not supported

4 Specific new messages

4.1 Leveraging CSS

Cascading Style Sheets [CSS] are a powerful way to control the appearance of elements on a web page. The Web
version of INScore provides a specific class message to use CSS in parallel to the standard mechanisms. This
message is supported by all the INScore objects.

3

https://www.w3schools.com/css/css_intro.asp

classMsg

class
�� �
 1�

�2
className�

�
�

�

• 1: without argument, remove all class settings
• 2: set the CSS classes of an object

NOTE
If a class message has not the expected effect, it’s likely because the CSS properties of the target object are set
by the standard INScore mechanisms (like color, border, font-size, etc.). As the own attributes of an object have
precedence over the class of the object, the properties of the class are then ignored. You can force the properties
of the class by adding the CSS rule !important which will override all previous styling rules for that specific
property.

5 Audio objects

5.1 Audio objects

Audio objects are connectable objects i.e. objects which output can be connected to the input of another audio
object. In the INScore model, the following objects are audio objects: audio, video, faust (see section 5.2) and
audioio (see section 5.3).
Audio objects support the following messages:

audioMsgs

connect
�� �
�

�disconnect
�� �

�

destination�
�

�

• connect: connect the outputs of the object to the destination inputs. The destination must be a another
audio object. Inputs and outputs count must be the same on source and destination. The destination
supports regular expressions.

• disconnect: disconnect the outputs of the object from the destination inputs. Note that errors (e.g. no
existing connection with the destination) are silently ignored.

NOTE
The connect message assumes that the source and destination are located in the same hierarchy (i.e. they have
the same parent).

audiogetMsgs

get
�� �
 connect

�� �
�
�in

�� �
�out
�� �

�

• in: gives the number of inputs of the audio object
• out: gives the number of outputs of the audio object

5.2 Faust objects

Faust is a functional programming language for sound synthesis and audio processing. Faust objects are available,
providing that the Faust library has been loaded.

4

https://faust.grame.fr/

5.2.1 Creating a Faust object

The faust or faustf types must be used to create a Faust object.

NOTE
The faust type exists with the native version but to load a pre-compiled DSP. faustdsp and faustdspf types
are not supported.

setFaust

set
�� �
 1

faust
�� �
�

�int32
�� �

�

dspCode�
�2

faustf
�� �
�

�int32
�� �

�

dspFile

�

The expected arguments of the set message are:

• an optional integer that indicates a number of voices used to create a polyphonic DSP (see section 5.2.4).
Note that when present, a polyphonic DSP is created even if equal to 1.

• 1: Faust DSP code (see the Faust language for more information).
• 2: a Faust DSP file.

By default, a Faust DSP appears as a browsable block diagram.

NOTE
The Faust language uses characters that have a special meaning in HTML: for example, with the split operator
<:, the ’<’ character will be interpreted as an opening HTML tag and you should use HTML escapes (e.g. <
instead of <). This is necessary for inline DSP code only, DSP files are not concerned.

5.2.2 Faust messages

Faust objects supports the audio objects messages plus an additional query message:

faustgetMsgs

get
�� �
ui

�� �

• ui: gives the Faust processor parameters (see section 5.2.3) i.e. for each parameter: its OSC address

followed by the parameter UI type, a label, the minimum and maximum values and the parameter step.

5.2.3 Faust objects parameters

A Faust DSP code can declare UI elements that are used by architecture files to build controllers providing users
with dynamic control of the DSP parameters. In INScore, DSP UI elements are used to extend the Faust object
address space. For example, when a DSP code declares a UI element named ’Volume’, a Faust object which
address is /ITL/scene/dsp is extended as /ITL/scene/dsp/Volume.
Faust parameters support two types of messages:

faustParamMsgs
1

float32
�� �
�

�2
get
�� �

�

• 1: set the parameter value
• 2: gives the parameter value

5

https://faustdoc.grame.fr/

NOTE
When a parameter which type is button is set to 1, it is automatically reset to zero after a short time (correspond-
ing at least to one audio buffer size).

5.2.4 Polyphonic objects

Polyphonic objects (i.e. Faust objects created using the optional voice number) support additional messages:

faustPolyMsgs

keyOn
�� �
�

�keyOff
�� �

�

chan pitch vel�
�allNotesOff

�� �

�

• keyOn and keyOff messages take 3 integer parameters: a MIDI channel, the note pitch and the velocity.
• allNotesOff: similar to MIDI all notes off message

5.3 Audio Input / Output

Audio input / output objects are provided as audio object (see sction 5.1) to the represent the physical audio
inputs and outputs, in order to homogenize the connection process. An audio input / output type is audioio. It is
created with a number of inputs and outputs as arguments.

audioioMsgs

set
�� �
audioio

�� �
int32
�� �
int32

�� �

NOTE

The current Javascript implementation automatically creates an audio input objet named audioInput (if any)
and an audio output object named audioOutput (if any). Thus the names audioInput and audioOutput are
reserved and you should avoid to use them (unless audio connections are not needed).

6 Communication scheme

INScore forwarding mechanism supports http and ws protocols since version 1.27. Since these protocols are
connection based, a counterpart connect message is provided with the Web version.

connectMsg

connect
�� �
 1�

�2
remoteHost�

�
�

�

• 1) removes the existing set of connections,
• 2) connect to a list of remote hosts. Once the connection is established, the local INScore engine may

receive messages from the remote hosts. To establish the connection, the remote hosts must have set a
forwarding mechanism using the same protocol with the same port number.

6

remoteHost
1

http://
�� �
�

�2
https://
�� �
�3
ws://
�� �

�

hostname :
���
portnum�

�

�

• 1) uses http as communication protocol,
• 2) uses https,
• 3) uses websockets.

6.1 Web messages format

Messages emitted by the http and ws forwarding mechanism and received by connected clients are encoded in
JSON and transmitted as base64 encoded packets. The JSON format is the following:

{

’id’ : number ,

’method’ : ’post’ ,

’data’ : textual inscore messages

}

• id: is a packet unique identifier (currently unused)
• method: value must be ’post’
• data: must contain a valid inscore script

Although the native version of INScore supports this format for the http, https and ws protocols, nothing
prohibits another application to control INScore web pages, provided that the format described above is respected.

7

https://www.json.org/

	Introduction
	Behavioural differences
	Optional components
	Using files in a script

	Unsupported
	Unsupported objects
	Unsupported messages
	Common messages
	Application messages
	Application log window
	Scene messages
	Type specific messages
	Synchronization
	Events

	Specific new messages
	Leveraging CSS

	Audio objects
	Audio objects
	Faust objects
	Creating a Faust object
	Faust messages
	Faust objects parameters
	Polyphonic objects

	Audio Input / Output

	Communication scheme
	Web messages format

